• Title/Summary/Keyword: stress dip

Search Result 63, Processing Time 0.021 seconds

A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING (연속 아연 도금 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

Elucidation of Copper and Asparagine Transport Systems in Saccharomyces cerevisiae KNU5377 Through Genome-Wide Transcriptional Analysis

  • KIM IL-SUP;YUN HAE SUN;SHIMISU HISAYO;KITAGAWA EMIKO;IWAHASHI HITOSHI;JIN INGNYOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1240-1249
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 has potential as an industrial strain that can ferment wasted paper for fuel ethanol at $40^{\circ}C$ [15, 16]. To understand the characteristics of the strain, genome-wide expression was performed using DNA microarray technology. We compared the homology of the DNA microarray between genomic DNAs of S. cerevisiae KNU5377 and a control strain, S. cerevisiae S288C. Approximately $97\%$ of the genes in S. cerevisiae KNU5377 were identified with those of the reference strain. YHR053c (CUP1), YLR155c (ASP3), and YDR038c (ENA5) showed lower homology than those of S. cerevisiae S288C. In particular, the differences in the regions of YHR053c and YLR155c were confirmed by Southern hybridization, but did not with that of the region of YDR038c. The expression level of mRNA in S. cerevisiae KNU5377 and S288C was also compared: the 550 ORFs of S. cerevisiae KNU5377 showed more than two-fold higher intensity than those of S. cerevisiae S288C. Among the 550 ORFs, 59 ORFs belonged to the groups of ribosomal proteins and mitochondrial ribosomal proteins, and 200 ORFs belonged to the group of cellular organization. DIP5 and GAP1 were the most highly expressed genes. These results suggest that upregulated DIP5 and GAP 1 might take the place of ASP3 and, additionally, the sensitivity against copper might be contributable to the lowest expression level of copper-binding metallothioneins encoded by CUP 1a (YHR053c) and CUP1b (YHR055c) in S. cerevisiae KNU5377.

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF

Internal Stress, Anelasticity and Recovery in Steady State Creep of 2024 Al Alloy at High Temperature (2024 Al 합금의 고온 정상크리이프 중의 내부응력의 탄성 및 회복에 관한 연구)

  • 박경동;오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.292-297
    • /
    • 1986
  • Measurements of internal stress .sigma.$_{i}$, anelastic strain .epsilon.$_{A}$ and recovery rate .gamma. were made in steady state creep of 2024 Al alloys over a wide range of stresses at temperatures between 260.deg. C and 380.deg. C, for the purpose of investigating the relations among the three parameters. Values of .sigma.$_{i}$ were obtained by the method of strain transient dip test, and those of .epsilon.$_{A}$ and .gamma. were determined from the results of sudden stress removal or reduction tests. As a main result, it is thought that the anelastic behavior and recovery process are basically dependent on same deformation mechanisms.sms.sms.

Stress Distribution Under Line Load in Transversely Isotropic Rock Mass (평면이방성 암반에서 선하중에 의한 응력분포 특성)

  • Lee Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.288-295
    • /
    • 2005
  • Many mechanical defects originated from various geological causes make rock mass exhibit anisotropic characteristics. Understanding how the stress distribution occurs in anisotropic rock mass is, therefore, very important for the design of footings on rock and rock structures. In this study, the patterns of elastic stress distribution, developed by acting line load on the surface, in transversely isotropic was investigated. The influence of joint stiffness, joint spacing, and dip angle on the stress distribution was examined. By assuming the Mohr-Coulomb criterion as joint slip condition, the development of joint slip zone was also discussed.

Effect of spatial characteristics of a weak zone on tunnel deformation behavior

  • Yoo, Chungsik
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • This paper focuses on the deformation behavior of tunnels crossing a weak zone in conventional tunneling. A three-dimensional finite element model was adopted that allows realistic modeling of the tunnel excavation and the support installation. Using the 3D FE model, a parametric study was conducted on a number of tunneling cases with emphasis on the spatial characteristics of the weak zone such as the strike and dip angle, and on the initial stress state. The results of the analyses were thoroughly examined so that the three-dimensional tunnel displacements at the tunnel crown and the sidewalls can be related to the spatial characteristic of the weak zone as well as the initial stress state. The results indicate that the effectiveness of the absolute displacement monitoring data as early warning indicators depends strongly on the spatial characteristics of the weak zone. It is also shown that proper interpretation of the absolute monitoring data can provide not only early warning for a weak zone outside the excavation area but also information on the orientation and the extent of the weak zone. Practical implications of the findings are discussed.

Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method (디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석)

  • Junwon Park;Yeon-Suk Jeong;Young-Cheol Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • In this paper, we present a DIP-MLS testing method that combines digital image processing with a rigid body-based MLS differencing approach to measure mechanical variables and analyze the impact of target location and image resolution. This method assesses the displacement of the target attached to the sample through digital image processing and allocates this displacement to the node displacement of the MLS differencing method, which solely employs nodes to calculate mechanical variables such as stress and strain of the studied object. We propose an effective method to measure the displacement of the target's center of gravity using digital image processing. The calculation of mechanical variables through the MLS differencing method, incorporating image-based target displacement, facilitates easy computation of mechanical variables at arbitrary positions without constraints from meshes or grids. This is achieved by acquiring the accurate displacement history of the test specimen and utilizing the displacement of tracking points with low rigidity. The developed testing method was validated by comparing the measurement results of the sensor with those of the DIP-MLS testing method in a three-point bending test of a rubber beam. Additionally, numerical analysis results simulated only by the MLS differencing method were compared, confirming that the developed method accurately reproduces the actual test and shows good agreement with numerical analysis results before significant deformation. Furthermore, we analyzed the effects of boundary points by applying 46 tracking points, including corner points, to the DIP-MLS testing method. This was compared with using only the internal points of the target, determining the optimal image resolution for this testing method. Through this, we demonstrated that the developed method efficiently addresses the limitations of direct experiments or existing mesh-based simulations. It also suggests that digitalization of the experimental-simulation process is achievable to a considerable extent.

Early Alterations of Chlorophyll Fluorescence by Light-Chilling in Cucumber (Cucumis sativus) Leaves and Their Usage as Stress Indicators (오이 잎에서 저온 광저해에 의한 형광유도과정의 초기 변이와 스트레스 지표)

  • Ha, Suk-Bong;Young-Jae Eu;Choon-Hwan Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.151-163
    • /
    • 1996
  • To investigate the early symptoms of light-chilling, alterations of chlorophyll fluorescence transients were monitored in cucumber (Cucumis sativus L. cv. Ilmichungjang) leaves. During 24 h chilling, decreases in (Fv)m/Fm, qE and qQ, and an increase in Fo were observed. The chilling effects were not recovered at room temperature, and a significant increase in Fo was observed during the recovery period. After 6 h chilling, ‘dip’(D) level of the transients became obscure, and the negative slope after ‘peak’(P) disappeared. The first derivative (dFv/dt) of the fast fluorescence rise curve was used to obtain more accurate information about the changes in the transients. The maximal rate of the fluorescence increase in the D-p rise curve (Fr) has been the most frequently used chilling stress indicator. However, a correct value of Fr could not be measured when the D level became obscure. This problem was overcome by introducing a new indicator, HFr (dFv/dt at Fv = 1/2 (Fv)m), and HFr gave very similar values to Fr. To monitor the changes in curvature around D level, another new parameter, ${\Delta}S$(D-Fr), was also introduced. These three parameters decreased very sensitively during light-chilling. In addition, increases in these parameters were observed during the first 2 h chilling, but this increase in Fr was also observed in pea leaf discs dark-chilled for 15 min, suggesting that this very early change is a common response to chilling in both pea and cucumber leaves. Quenching coefficients were also very sensitive to chilling, especially qE. Discussion on the usage of these parameters as chilling stress indicators is given in the text.

  • PDF

Investigating the Stress on Fault Plane Associated with Fault Slip Using Boundary Element Method (경계요소법을 이용한 단층 슬립에 따른 단층면 응력에 관한 연구)

  • Sung Kwon, Ahn;Hee Up, Lee;Jeongjun, Park;Mintaek, Yoo
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.598-610
    • /
    • 2022
  • Avoiding a fault zone would be a best practice for safety in underground construction, which is only sometimes possible because of many restrictions and other field conditions. For instance, there is an ongoing conception of Korea-Japan subsea tunnels that inevitably cross a massive fault system in the Korea Strait. Therefore it was deemed necessary to find an efficient way of predicting the likely behaviour of underground structures under fault slip. This paper presents the findings from simple numerical analysis for investigating the stress induced at a normal fault with a dip of 45 degrees. We used a boundary element software that assumed constant displacement discontinuity, which allowed the displacement to be estimated separately at both the fault's hangingwall and footwall sides. The results suggested that a principal stress rotation of 45 degrees occurred at the edges of the fault during the slip, which was in agreement with the phenomenon for fault plane suggested in the body of literature. A simple numerical procedure presented in this paper could be adopted to investigate other fault-related issues associated with underground structure construction.

A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE (팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구)

  • Lee, Dong-Won;Kang, Nam-Cheol;Kim, Guen-Young;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.