• 제목/요약/키워드: stress cracking

검색결과 1,023건 처리시간 0.019초

Factors Affecting Stress Corrosion Cracking Susceptibility of Alloy 600 MA Steam Generator Tubes

  • Kang, Yong Seok;Lee, Kuk Hee;Shin, Dong Man
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.22-25
    • /
    • 2021
  • In the past, Alloy 600 nickel-based alloys have been widely used in steam generators. However, most of them have been replaced by thermally treated alloy 690 tubes in recent years because mill annealed alloy 600 materials are known to be susceptible to stress corrosion cracking. Unlike this general perception, some steam generators using mill annealed alloy 600 tubes show excellent performance even though they are designed, manufactured, and operated in the same way. Therefore, various analyses were carried out to determine causes for the degradation of steam generators. Based on the general stress corrosion cracking mechanism, tube material susceptibility, residual stress, and sludge deposits of steam generators were compared to identify factors affecting stress corrosion cracking. It was found that mill annealed alloy 600 steam generator tubes showed higher resistance to stress corrosion cracking when the amount of sludge deposits on tube surface was smaller and residual stress generated during the fabrication was lower.

합금속의 수소취성과 응력부식균열 고찰 (Review on Delayed Hydride Cracking and Stress Corrosion Cracking of Metals)

  • 김영석;정용무;임경수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.266-273
    • /
    • 2004
  • The objective of this study is an understanding of stress corrosion cracking of metals that is recognized to mostly limit the lifetime of the structural materials by comparing the features of delayed hydride cracking of zirconium alloys with those of stress corrosion cracking (SCC) of Ni-based alloys and hydrogen cracking of stainless steels. To this end, we investigated a dependence of delayed hydride cracking (DHC) velocity on the applied stress intensity factor and yield strength, and correlated a temperature dependence of the striation spacing and the DHC velocity. We reviewed a similarity of the features between the DHC of zirconium alloys, the SCC of Ni-based alloys and turbine rotor steels, and the hydrogen cracking of stainless steels and discussed the SCC phenomenon in metals with our DHC mode.

고강도 7xxx 알루미늄 합금의 응력부식균열에 미치는 부식환경과 응력속도의 영향 (Effect of Corrosion Atmosphere and Strain Rate on the Stress Corrosion Cracking of High Strength 7xxx Aluminum Alloy)

  • 윤여완;김상호
    • 한국표면공학회지
    • /
    • 제41권3호
    • /
    • pp.121-128
    • /
    • 2008
  • High strength 7xxx aluminum alloys have been applied to automotive bump back beam of the some limited model for light weight vehicle. The aluminum bump back beam is manufactured through extrusion, bending and welding. The residual stress given on these processes combines with the corrosive atmosphere on the road spreaded with corrosive chemicals to melt snow to occur the stress corrosion cracking. The composition of commercial 7xxx aluminum has Zn/Mg ratio about 3 and Cu over 2 wt% for better strength and stress corrosion cracking resistivity. But this composition isn't adequate for appling to the automotive bump back beam with high resistance to extrusion and bad weldability. In this study the composition of 7xxx aluminum alloy was modified to high Zn/Mg ratio and low Cu content for better extrusion and weldability. To estimate the resistivity against stress corrosion cracking of this aluminum alloy by slow strain rate test, the corrosion atmosphere and strain rate separate the stress corrosion cracking from conventional corrosion must be investigated. Using 0.6 Mol NaCl solution on slow strain rate test the stress corrosion cracking induced fracture was not observed. By adding 0.3% $H_2O_2$ and 0.6M $Na_2SO_4$ to 1M NaCl solution, the corrosion potential and current density of polarization curve moved to active potential and larger current density, and on the slow strain rate test the fracture energy in solution was lower than that in pre-exposure. These mean the stress corrosion cracking induced fracture can be estimated in this 1M NaCl + 0.3% $H_2O_2$ + 0.6M $Na_2SO_4$ solution. When the strain rate was below $2{\times}10^{-6}$, the stress corrosion cracking induced fracture start to be observed.

해수환경중 캐비테이션 침식-부식 하에서의 응력부식균열 거동 (II) (Stress Corrosion Cracking Behavior under Cavitation Erosion-Corrosion in Sea Water-Part (II))

  • 안석환;임우조
    • 수산해양기술연구
    • /
    • 제36권2호
    • /
    • pp.139-146
    • /
    • 2000
  • Cavitation can occur in pipes when liquid is moving at high velocity, especially at pittings where the smooth bore of the pipe is interrupted. The effect is usually to produce pitting on the downstream side of the turbulence. However, stress corrosion cracking behavior under cavitation erosion-corrosion was neatly unknown. In this study, therefore, some were investigated of stress corrosion cracking behavior, others were stress corrosion cracking behavior under cavitation erosion-corrosion of water injection. And datas obtained as the results of experiment were compared between the two. Mainresult obtained are as follows: 1) Stress corrosion cracking growth rate of heat affected zone under cavitation erosion-corrosion becomes most rapid, and stress intensity factor $K_1$becomes most high. 2) Stress corrosion cracking growth mechanism by cavitation erosion-corrosion is judgement on the strength of the film rupture model and the tunnel model. 3) The range of potential as passivation of heat affected zone is less noble than that of base metal, and that value is smaller. 4) Corrosion potential under cavitation erosion-corrosion in loaded stress is less noble than that of stress corrosion, and corrosion current density is higher.

  • PDF

공업용수배관의 응역부식균열 거동에 관한 연구 (Study on the Stress Corrosion Cracking Behaviour of Piping for Industrial Water)

  • 임우조;이진평
    • 수산해양기술연구
    • /
    • 제33권3호
    • /
    • pp.194-201
    • /
    • 1997
  • Recently with the rapid development in the industries such as an iron mill and chemical plants, these are enlarged by the use of the piping. This piping was encountered the stress corrosion cracking(SCC) because of stress by water pressure and residual stress of welding etc. under industrial water. In this paper, the behaviour of stress corrosion cracking on the weld zone of steel pipe piping water(SPPW) were investigated according to pre-heat before welding in natural seawater(specific resistance : 25$\Omega$-cm). The main results obtained are as follows :1) The stress corrosion cracking for SPPW and SB 41 is most ready to propagate in heat affected zone of weldment. 2) The SCC sensitivity of SPPW on weldment is more susceptible than that of SB 41. 3) The stress corrosion cracking growth of heat affected zone is delayed by the preheat and dry of base metal and electrode before welding.

  • PDF

SCC Mechanism of Ni Base Alloys in Lead Contaminated Water

  • Hwang, Seong Sik;Kim, Dong Jin;Lim, Yun Soo;Kim, Joung Soo;Park, Jangyul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.187-191
    • /
    • 2008
  • Transgranular stress corrosion cracking of nickel base alloys was reported by Copson and Dean in 1965. Study to establish this cracking mechanism needs to be carried out. Laboratory stress corrosion tests were performed for mill annealed(MA) or thermally treated(TT) steam generator tubing materials in a high temperature water containing lead. An electrochemical interaction of lead with the alloying elements of SG tubings was also investigated. Alloy 690 TT showed a transgranular stress corrosion cracking in a 40% NaOH solution with 5000 ppm of lead, while intergranular stress corrosion racking was observed in a 10% NaOH solution with 100 ppm lead. Lead seems to enhance the disruption of passive film and anodic dissolution of alloy 600 and alloy 690. Crack tip blunting at grain boundary carbides plays a role for the transgranular stress corrosion cracking.

Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in Water Reactors

  • Yonezawa, Toshio
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.77-84
    • /
    • 2008
  • Based upon the good compatibility to neutron irradiation and high temperature water environment, austenitic stainless steels are widely used for core internal structural materials of light water reactors. But, recently, intergranular cracking was detected in the stainless steels for the core applications in some commercial PWR plants. Authors studied on the root cause of the intergranular cracking and developed the countermeasure including the alternative materials for these core applications. The intergranular cracking in these core applications are defined as an irradiation assisted mechanical cracking and irradiation assisted stress corrosion cracking. In this paper, the root cause of the intergranular cracking and its countermeasure are summarized and discussed.

API-581 절차에 의한 정량적 위험기반검사에서 부식성 균열에 의한 응력부식의 사고발생 가능성 해석 (Analysis of Likelihood of Failure for the Stress Corrosion Cracking by Caustic Cracking through the Quantitative Risk Based-Inspection using API-581 BRD)

  • 이헌창;최성규;조지훈;함병호;김태옥
    • 대한안전경영과학회지
    • /
    • 제9권1호
    • /
    • pp.65-76
    • /
    • 2007
  • The likelihood of failure for the stress corrosion cracking (SCC) of caustic cracking, which affect to a risk of facilities, was analyzed through the risk based-inspection using API-581 BRD. We found that SCC of the caustic cracking was occurred above 5 % NaOH concentration, and the technical module subfactor (TMSF) was maximized for above 50 % concentration. The heat traced and monitoring were not sensitive to the TMSF with NaOH concentration and temperature. But the steam out was more of less affect minimum value of the TMSF. Also, the inspection number, the inspection effectiveness, and the year since inspection were very sensitive to the TMSF with NaOH concentration and temperature. Therefore, the plan of next inspection will be established with compositively considering those at once.

적층복합판의 충격에 의한 모재균열 및 층간분리에 관한 연구 (Matrix Cracking and Delmaination in Laminated Composite Plates Due to Impact)

  • 김문생;박승범
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.317-326
    • /
    • 1997
  • An investigation was performed to study the matrix cracking and delamination in laminated composite plates due to transverse impact. A model was developed for predicting the initiation of the matrix cracking and the shape and size of impact-induced delamination in laminated composite plates resulting from the ballistic impact. The model consists of a stress analysis and a failure analysis. A transient finite element analysis which was based on the higher-order shear deformation theory was adopted for calculating the stresses inside the laminated composite plates during impact. A failure analysis was used to predict the initial intraply matrix cracking and the shape and size of the interface delamination in the laminates. As a results, a shear matrix cracking which was governed by the transverse interlaminar shear stress occured at the middle layer near the midplane of laminates and a bending matrix cracking which was governed by the transverse inplane stress occured at the bottom layer near the surface of laminates. In a thick laminates, a shear matrix cracking generated first at the middle layer of laminates, but in a thin laminates, a bending matrix cracking generated first at the bottom layer of laminates.

304 스테인레스鋼 熔接部의 응력부식구열에 관한 硏究 (A study on stress corrosion cracking of weld zone in 304-stainless steel)

  • 김경일;강인찬
    • Journal of Welding and Joining
    • /
    • 제5권2호
    • /
    • pp.35-43
    • /
    • 1987
  • The effect of post weld heat treatment (P.W.H.T) on the propagation rate of stress corrosion cracking(S.C.C) and threshold stress intensity factor ($K_{IC}.c.c$) for stress corrosion cracking of 304 stainless steel has been investigated in boiling 45% $MgCl_2$ solutions with W.O.L specimens. Specimens were precracked by turning a pair of Cr-Mo steel bolts into a machined slot at the end of the specimen. The fracture surface was examined fractographically by Scanning Electron Microscope(S.E.M.)

  • PDF