• Title/Summary/Keyword: stress crack resistance

Search Result 294, Processing Time 0.024 seconds

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

Experimental Study on the Shear Behavior of Reinforced Hooked-Steel-Fiver Concrete Beams (훅트강섬유보강 철근콘크리트보의 전단거동에 대한 실험적 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.179-188
    • /
    • 1995
  • SFRC overcomes brittleness of concrete and has increases strength due to the action of confmement, crack arrestmg mechan~sm and pull out resistances of steel f~bers ~ n s ~ d e the concrete. These lead also to the increased strength and ductility under the shear stress. It has been reported that the secondary remforcement effect of steel fibers IS more pronounced In shear than flexure. Addition of hooked stee!, fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of Reinforced Hooked-Steel-Fiber Concrete Ream(RHSFCI3) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spaclngs of stlrrups were taken into account as the mam parameters. Some eyuatlons reported in the literatures, regardmg the predict~ons of the shear strength of RHSFCB have been evaluated stdtlst~cdlly based on the tot a1 number of 95 test results on RHSFCB faded In shear on shear flexu~al mode.

A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS WITH CAVITY DESIGN ON FRACTURE OF COMPOSITE RESIN INLAY RESTORED TOOTH (복합레진 인레이 수복시 와동형태에 따른 치아파절에 관한 유한요소법적 연구)

  • Kim, Chull-Soon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.231-254
    • /
    • 1994
  • Fracture of cusp, on posterior teeth, especially those carious or restored, is major cause of tooth loss. Inappropriate treatments, such as unnecessarily wide cavity preparations, increase the potential of further trauma and possible fracture of the remaining tooth structures. Fracture potential may be directly related to the stresses exerted upon the tooth during masticatory function. The purpose of this study is to evaluate the fracture resistance of tooth, restored with composite resin inlay. In this study, MOD inlay cavity prepared on maxillary first premolar and restored with composite resin inlay. Three dimensional finite element models with eight nodes isoparametric solid element, developed by serial grinding-photographing technique. These models have various occlusal isthmus and depth of cavity, 1/2, 1/3 and 1/4 of isthmus width and 0.7, 0.85 and 1.0 of depth of cavity. The magnitude of load was 474 N and 172 N as presented to maximal biting force and normal chewing force. These loads applied onto ridges of buccal and lingual cusp. These models analyzed with three dimensional finite element method. The results of this study were as follows : 1. There is no difference of displacement between width of occlusal isthmus and depth of cavity. 2. The stress concentrated at bucco-mesial comer, bucco-disal comer, pulpal line angle and the interface area between internal slopes of cusp and resin inlay. 3. The vector of stress direct to buccal and lingual side from center of cavity, to tooth surface going on to enamel. The magnitude of vector increase from occlusal surface to cervix. 4. The crack of tooth start interface area, between internal slop of buccal cusp and resin inlay. It progresses through buccopulpal line angle to cervix at buccomesial and buccodistal comer. 5. The influence with depth of cavity to fracture of tooth was more than width of isthmus. 6. It would be favorable to make the isthmus width narrower than a third of the intercuspal distance and depth of cavity is below 1 : 0.7.

  • PDF

Behavior of Reinforced Earth Retaining Wall for Permitting Reinforcement to Subside with Monitoring (현장계측을 통한 보강재 침하형 보강토 옹벽의 거동특성)

  • Chung, Jin-Hyuck;Oh, Jong-Keun;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.5-15
    • /
    • 2009
  • The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block. However, this system defect may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall. Hence, the new connector system which was able to allow the settlement of reinforcement was developed in this study and a test was carried out in the study area which is divided into the conventional reinforced earth retaining wall and reinforced Earth Retaining Wall driving the settlement. As the results of field monitoring in situ, the ratio of tensile force calculated at maximum value on contiguous portion of front block showed that the settlement type decreased the stress concentration near the face of front block greater than the conventional type.

Flexural Behavior of Concrete Beams Reinforced with Fe based Shape Memory Alloy Bar (철계-형상기억합금 바로 제작된 콘크리트 보의 휨 거동)

  • Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2020
  • This paper reports an experimental study to evaluate the flexural behavior of concrete beams reinforced using Fe based shape memory alloy (Fe-SMA) bars. For the experiment, a concrete beam of 200mm×300mm×2,200mm was produced, and a 4% pre-strained Fe-SMA bar was used as a tensile reinforcement. As experimental variables, type of tensile reinforcement (SD400, Fe-SMA), reinforcement ratio (0.2, 0.39, 0.59, 0.78), activation of Fe-SMA (activation, non-activation), and joint method of Fe-SMA bar (Continuous, welding, coupler) were considered. The electric resistance heating method was used to activate the Fe-SMA bar, and a current of 5A/㎟ was supplied until the specimen reached 160℃. After the upward displacement of the specimen due to the camber effect was stabilized, a three-point flexural loading experiment was performed using an actuator of 2,000 kN capacity. As a result of the experiment, it was found that the upward displacement occurred due to the camber effect as the Fe-SMA bar was activated. The specimen that activated the Fe-SMA bar had an initial crack at a higher load than the specimen that did not activate it. However, as with general prestressed concrete, the effect of the prestress by Fe-SMA activation on the ultimate state of the beam was insignificant.

Grain Boundary Character Changes and IGA/PWSCC Behavior of Alloy 600 Material by Thermomechanical Treatment (가공열처리에 의한 Alloy 600 재료의 결정립계특성 변화와 입계부식 및 1차측 응력부식균열 거동)

  • Kim, J.;Han, J.H.;Lee, D.H.;Kim, Y.S.;Roh, H.S.;Kim, G.H.;Kim, J.S.
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.919-925
    • /
    • 1999
  • Grain boundary characteristics and corrosion behavior of Alloy 600 material were investigated using the concept of grain boundary control by thermomechanical treatment(TMT). The grain boundary character distribution (GBCD) was analyzed by electron backscattered diffraction pattern. The effects of GBeD variation on intergranular at tack(JGA) and primary water stress corrosion cracking(PWSeC) were also evaluated. Changes in the fraction of coinci dence site lattice(CSL) boundaries in each cycle of TMT process were not distinguishable, but the total eSL boundary frequencies for TMT specimens increased about 10% compared with those of the commercial Alloy 600 material. It was found from IGA tests that the resistance to IGA was improved by TMT process. However, it was found from PWSCC test that repeating of TMT cycles resulted in the gradual decrease of the time to failure and the maximum load due to change in grain boundary characteristics, while the average crack propagation rate of primary crack increased mainly due to suppression of secondary crack propagation. It is considered that these corrosion characteristics in TMT specimens is attributed to 'fine tuning of grain boundary' mechanism.

  • PDF

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.

Modeling of Friction Characteristic Between Concrete Pavement Slab and Subbase (콘크리트 포장 슬래브와 보조기층 간 마찰특성 모형화)

  • Lim, Jin-Sun;Son, Suk-Chul;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.211-218
    • /
    • 2010
  • Volume of concrete slab changes by temperature and moisture effects. At that time, tensile stress develops because the slab volume change is restrained by friction resistance between the slab and subbase, and then crack occurs occasionally. Accordingly, researchers have made efforts to figure out the friction characteristics between the slab and subbase by performing push-off tests. Lately, researches to analyze concrete pavement behavior by the friction characteristics have been performed by finite element method. In this study, The friction characteristics between the slab and subbase were investigated based on the friction test results for lean concrete, aggregate, and asphalt subase widely used in Korean concrete pavements. The energy method bilinearizing relation between nonlinear friction resistance and displacement were suggested. The friction test was modeled by 3-D finite element program, ABAQUS, and the model was verified by comparing the analyzed results to the test results. The bilinear model developed by the energy method was validated by comparing analysis results obtained by using the nonlinear and bilinear friction resistance displacement relation as input data. A typical Korean concrete pavement was modeled by ABAQUS and EverFE and analyzed results were compared to evaluate applicability of the bilinear model.

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Studies on the Effect of Fiber Reinforcing upon Mechanical Properties of Concrete and Crack Mode of Reinforoed Concrete (섬유보강이 콘크리트의 역학적 특성과 철근콘크리트의 균열성상에 미치는 영향에 관한 연구)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4645-4687
    • /
    • 1978
  • This study was attempted to investigate the mechanical properties of concrete and crack control effects of reinforced concrete with steel and glass fiber. The experimental program includes tests on the properties of fresh concrete containing fibers, compressive strength, tensile strength, flexural strength, Young's modulus, Shrinkage and deformation of steel or glass fiber reinforced concrete. Also this study was carried out to investigate the effect of steel or glass fiber to retard the development in reinforced concrete subject to uniaxial tension and thus facilitate the use of steels of higher strength. The major conclusions that can be drawn from the studies are as follows: 1. The effect of the fibers in various mixes on fresh concrete confirmed that fibers do have a significant effect on the properties of fresh concrete, bringing much more stable and exhibiting a signiflcant reduction in surface bleeding, and that the cohesion is greatly improved and the internal resistance increases with fiber concentration. But the addition of an excess contents and length of fibers brings about the reduction of workability. 2. With the addition of steel fibers(1.5% Vol.) to concrete, the compressive strength as compared with plain concrete showed a very slight increase, but excess addition, over 1.5% Vol. of steel and glass fiber reduced its strength. 3. Splitting tensile strength of fiber reinforced concrete showed a significant increase tendency, as compared with plain concrete. In case of containing steel fiber (2.5%, 30mm), it showed that the maximum increase rate of 1.48 times as much rate, and in case of containing glass fiber (2.5%, 30mm), the increase rate of strength was 1.25 times as much rate. 4. Flexural strength of fiber reinforced concrete showed a significant tendency, as compared with plain concrete. Containing steel fiber (2.5%, 30mm) showed the maximum increase rate of 1.64 times as much rate and containing glass fiber (2.5%, 30mm) showed the increase rate of strength of 1.32 times as much rate, and in general, the 30mm length brougth the best results. 5. The strength ratio ($\sigma$b/$\sigma$c and $\sigma$t/$\sigma$c) increased, when steel fiber's average spacing was up to 3.05mm, but decreased when beyond 3.05mm, and it was confirmed that tensile or flexural strengths of steel fiber reinforced concrete are apparently governed by fiber's average spacing. 6. The compressive strain of fiber reinforced concrete showed a significant increasing tendency as the fiber was added, but Young's modulus. with the addition of steel and glass fibers, showed a slight decrease tendency. And according to the increase of flexural strength, a considerable increase was seen in toughness. 7. With the addition of fiber's the shrinkage of concrete was significantly decreased, in both case of adding steel fibers 12.5%, 30mm, and showed a significant decrease ratio, in average 30.4% and 36.7%, as compared with plain concrete. 8. With the increase of fiber volume fraction and length, the gained stress in reinforcing bar in concrete specimens increased in all crack widths, but at different rates, with the decrease of fiber diameter, the stress showed a considerable increasing tendency. And the duoform steel fibers showed the greatest improvement, as compared with the other types tested. 9. The influence of fiber dimensions in order of significanse on the machanical properties of concrete and the crack control of reinforced concrete was explained as follows: content, length, aspect ratio and dimeter.

  • PDF