• Title/Summary/Keyword: stress corrosion cracks

Search Result 135, Processing Time 0.018 seconds

In-vitro Hertzian Fatigue Behavior of Zirconia/Alumina Composites (지르코니아/알루미나 복합체의 In-vitro Hertzian 피로거동)

  • Lee, Deuk-Yong;Park, Il-Seok;Kim, Dae-Joon;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • The degree of the indentation damage and strength degradation for 3Y-TZP ceramics and (Y,Nb)-TZP/$Al_2O_3$ dental implant composites was investigated under the Hertzian cyclic fatigue. Fatigue tests were conducted at contact loads of 500 to 3000 N and up to $10^6$ cycles in exact in vitro environments. At 500 N, no strength degradation and crack generation was observed up to $5{\times}10^5$ contact cycles. Fatigue properties of 3Y-TZP ceramics was superior to (Y,Nb)-TZP/ㅍ composites due to stress relief caused by the phase transformation from tettagonal to monoclinic phase. As contact load increased, the drastic reduction in strength was found when the damage transition from ring to radial crack occurred. The extent of strength degradation was more pronounced in vitro environments probably due to chemical corrosion of artificial saliva through cracks introduced during large numbers of contacts.

The examination of application possibility and development of new welding joint shape for aluminum alloy (Al어선 선체용접부의 신형상 개발 및 적용 가능성 검토)

  • Jong-Myung Kim;Chong-In Oh;Han-Sur Bang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.99-107
    • /
    • 2001
  • Manufacture of fishing vessel is needed the effective material for light, strength, fire and corrosion of water in order to improve durability by high-speed and fishing. These fishing vessel can be divided into FRP and AI alloys fishing vessel. FRP fishing vessel is light and effective for strength but highly ignited and susceptible to heat during the manufacturing ship by-produce noxious component for human. In the case of a scrapped ship, it cause environmental pollution. On the other hand, aluminum is a material in return for FRP and has merit of high-strength and lightness. It's more heat proof and durable than FRP and superior to prevent from corrosion. Al alloys fishing vessel development is rising as an urgent matter. But, al alloy has some defect of bad weldability, welding transformation, cracks and overcost of construction. Therefore this study is to develop the new welding joint shape solving aluminum defects and mechanical behavior. First of all, strength was compared and reviewed by analysis of plate, stiffen plate, new model simplified by using plate theory. On the base of this result, plate and new model of temperature distribution, weld residual stress and strength of tensile, compressive force were compared and reviewed by finite element computer program has been developed to deal with heat conduction and thermal elasto plastic problem. Also, new model is proved application possibility and excellent mechanic by strength comparison is established to tensile testing result.

  • PDF

Spalling of Intermetallic Compound during the Reaction between Electroless Ni(P) and Lead-free Solders (무전해 Ni(P)과 무연솔더와의 반응 중 금속간화합물의 spalling 현상에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin;Kang S. K.;Shih D. Y,;Lee Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.37-45
    • /
    • 2004
  • Electroless Ni(P) has been widely used for under bump metallization (UBM) of flip chip and surface finish layer in microelectronic packaging because of its excellent solderability, corrosion resistance, uniformity, selective deposition without photo-lithography, and also good diffusion barrier. However, the brittle fracture at solder joints and the spatting of intermetallic compound (IMC) associated with electroless Ni(P) are critical issues for its successful applications. In the present study, the mechanism of IMC spatting and microstructure change of the Ni(P) film were investigated with varying P content in the Ni(P) film (4.6,9, and $13 wt.\%$P). A reaction between Sn penetrated through the channels among $Ni_3Sn_4$ IMCs and the P-rich layer ($Ni_3P$) of the Ni(P) film formed a $Ni_3SnP$ layer. Thickening of the $Ni_3SnP$ layer led to $Ni_3Sn_4$ spatting. After $Ni_3Sn_4$ spatting, the Ni(P) film directly contacted the molten solder and the $Ni_3P$ phase further transformed into a $Ni_2P$ phase. During the crystallization process, some cracks formed in the Ni(P) film to release tensile stress accumulated from volume shrinkage of the film.

  • PDF

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.