• Title/Summary/Keyword: stress and strain recovery

Search Result 78, Processing Time 0.025 seconds

Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine (줄기 엽채소의 기계적 파지시 리올로지 특성)

  • Jun, Hyeon-Jong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

A Study on the Measurement for the Recovery Stress of Intelligent Composite by Experiment (실험법에 의한 지능성 복합체의 회복응력 측정에 관한 연구)

  • Hawong, Jai-Sug;Lee, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.515-523
    • /
    • 2003
  • Shape memory is physical phenomenon which a platically metal is restored to its original shape by a solid state phase change by heating. TiNi alloy the most effective material in the shape memory alloy(SMA). To study(measure) recovery stress of intelligent composite. Ti50-Ni50 shape memory matrix with prestrain SMA fiber. When SMA fiber of the intelligent composite is heated over austenite starting temperature(As) by electric heating. a recovery stress are generated. The recovery stress of the intelligent composite was measured by strain gage or photoelastic experiment. Measuring method of recovery stress by photoelastic experiment was developed in this research. It was certified that photoelastic experiment was more effective and more precise than strain gage method in the measurement of recovery stress.

The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy (Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향)

  • 이상용;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

The Effects of Pass Strain and Rolling Temperature on Flow Stress and Flow Strain of AA5083 Alloy (AA5083 합금의 고온유동응력 및 연신율에 미치는 압연온도와 패스변형량의 영향)

  • 고병철;박도현;유연철
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.169-177
    • /
    • 1999
  • Different pass strains and rolling temperatures were applied to understand the effects of pass strain and rolling temperature on flow stress and flow strain of AA5083 alloy. The specimens were prepared by conventional casting process followed by hot rolling. Hot torsion tests were conducted at temperature ranges of 350 to 52$0^{\circ}C$ under a strain rate of 1.0/sec. During the process, hot-restoration mechanisms, dynamic recovery(DRV) or dynamic recrystallization (DRX), of the AA5083 alloy were analyzed from the flow curves and deformed microstructures. It was found that while the rolling strain per pass and rolling temperature have little effect on the folw stress, they have significant effect on the failure strain. The DRV was responsible for the hot restoration mechanism of the hot-rolled specimen. heavily elongated grains and small subgrains containing dislocations were obtaned during the hot deformation. This was due to the presence of Al6Mn precipitate in the alloy.

  • PDF

Creep and Recovery Properties of Mat-type Rice Seedlings (Mat 묘(苗)의 크리이프 및 회복특성(回復特性))

  • Huh, Y.K.;Yi, C.K.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.181-187
    • /
    • 1989
  • The mechanical and rheological properties of agricultural materials which influence the machine design or handling are not completely understood. Agricultural materials do not react in a purely elastic manner, and their responses when subjected to stress and strain appear a combination of elastic and viscous behavior. Many researchers have studied the mechanical and rheological properties of the various agricultural materials, but those properties are available mostly for foreign varieties of agricultural products. Rheological properties of rice seedlings become important to formulate the principles governing their mechanical behavior. The objectives of this study were to experimentally determine the creep and recovery behavior of rice seedlings of one japonica-type and one Indica x japonica hybrid in the transplanting age. The results of this study are summarized as follows; 1. The compression creep and recovery behavior of mat-type seedlings could be described by 4-element Burger's model. 2. The steady-state creep appeared at the stress larger than 0.8 MPa and the logarithmic creep appeared at the stress smaller than 0.8 MPa. 3. In the compression creep test of the rice seedlings, the instantaneous elastic modulus of Burger's model showed the range from 20 to 40 MPa. The higher value of absolute viscosity for the rice seedling explained that the rice seedlings were viscoelastic materials. 4. In the recovery test of the rice seedlings, there was a tendency that the higher permanent strain of all samples was observed under the smaller stress being appeared, and the larger permanent strain in Dongjin was observed than in Samkang.

  • PDF

Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel (304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측)

  • 한형기;유연철;김성일
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy (중간가공열처리한 AI-Li계 합금의 고온변형거동)

  • Yoo, C.Y.;Jin, Y.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

The Effect of Repetitive Compression with Constant Stress on the Compressive Properties of Foams (일정 응력 반복압축이 발포체의 압축 특성에 미치는 영향)

  • Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.258-265
    • /
    • 2005
  • To study the compressive stress, recovery force and permanent strain of foams for footwear midsole, polyurethane(PU), phylon(PH) and injection phylon(IP) foams were repetitively compressed with constant compressive stress. Maximum compressive stress of PU did not decrease with repetitive compression on the constant compressive stress, but that of IP largely decreased. Engineering strain of foams were formed by repetitively compressing the three types of foam. The engineering strain of PU was smaller than that of IP and PH. Compressive stress and recovery force of IP and PH at certain strain were decreased with repetitive compression, but that of PU was not noticeably changed.

Measurement reliability of irreversible stress/strain limits in Sn-Cu double layer stabilized IBAD/RCE-DR processed GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Bautista, Zhierwinjay;Diaz, Mark Angelo;Shin, Hyung-Seop;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.36-40
    • /
    • 2018
  • In this study, the electromechanical properties in Sn-Cu double layer stabilized GdBCO coated conductor (CC) tapes with and without external lamination under uniaxial tension were examined at 77 K and self-field. Their irreversible stress and strain limits were determined using a loading-unloading scheme based on different critical current ($I_c$) recovery criteria. The repeated tests were performed and statistical estimation was done to check the reproducibility depending on the criterion adopted in evaluating the electromechanical properties. From the results, it showed that the Sn-Cu double-layer stabilized CC tapes have the higher irreversible stress limit, but lower irreversible strain limit as compared to brass laminated ones. Through the repeated tests, it can be found that a small scattering of irreversible limits existed in both CC tape samples. Finally, similar strain sensitivity of $I_c$ in both CC tapes was obtained.

Internal Stress, Anelasticity and Recovery in Steady State Creep of 2024 Al Alloy at High Temperature (2024 Al 합금의 고온 정상크리이프 중의 내부응력의 탄성 및 회복에 관한 연구)

  • 박경동;오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.292-297
    • /
    • 1986
  • Measurements of internal stress .sigma.$_{i}$, anelastic strain .epsilon.$_{A}$ and recovery rate .gamma. were made in steady state creep of 2024 Al alloys over a wide range of stresses at temperatures between 260.deg. C and 380.deg. C, for the purpose of investigating the relations among the three parameters. Values of .sigma.$_{i}$ were obtained by the method of strain transient dip test, and those of .epsilon.$_{A}$ and .gamma. were determined from the results of sudden stress removal or reduction tests. As a main result, it is thought that the anelastic behavior and recovery process are basically dependent on same deformation mechanisms.sms.sms.