• Title/Summary/Keyword: stress and liver injury

Search Result 105, Processing Time 0.025 seconds

Protective Effects of $\alpha$-Tocopherol and Ischemic Preconditioning on Hepatic Reperfusion Injury

  • Lee Woo-Yang;Lee Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1392-1399
    • /
    • 2005
  • This study evaluated the effect of $\alpha$-tocopherol ($\alpha$-TC), ischemic preconditioning (IPC) or a combination on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). Rats were pretreated with $\alpha$-TC (20 mg/kg per day, i.p.) for 3 days before sustained ischemia. A rat liver was preconditioned with 10 min of ischemia and 10 min of reperfusion, and was then subjected to 90 min of ischemia followed by 5 h or 24 h of reperfusion. I/R increased the aminotransferase activity and mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutamate dehydrogenase activity. $\alpha$-TC and IPC individually attenuated these changes. $\alpha$-TC combined with IPC ($\alpha$-TC+IPC) did not further attenuate the changes. The mitochondrial glutathione content decreased after 5 h reperfusion. This decrease was attenuated by $\alpha$-TC, IPC, and $\alpha$-TC+IPC. The significant production of peroxides observed after 10 min reperfusion subsequent to sustained ischemia was attenuated by $\alpha$-TC, IPC, and $\alpha$-TC+IPC. The mitochondria isolated after I/R were rapidly swollen. However, this swelling rate was reduced by $\alpha$­TC, IPC, and $\alpha$-TC+IPC. These results suggest that either $\alpha$-TC or IPC reduces the level of mitochondrial damage associated with oxidative stress caused by hepatic I/R, but $\alpha$- TC combined with IPC offers no significant additional protection.

Hepatoprotective Effect of Uncaria rhynchophylla on Thioacetamide-Induced Liver Fibrosis Model

  • Choi, Jeong Won;Shin, Mi-Rae;Lee, Ji Hye;Roh, Seong-Soo
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.142-153
    • /
    • 2021
  • Liver fibrosis is a wound-healing response to chronic liver injury, which is caused by the continuous and excess deposition of extracellular matrix (ECM). The aim of this study is to investigate whether Uncaria rhynchophylla water extract (UR) can ameliorate thioacetamide (TAA)-induced liver fibrosis. The liver fibrosis model was induced on C57BL/6 mice by intraperitoneal injection with TAA three times a week for 8 weeks. UR (200 mg/kg) or silymarin (50 mg/kg) was administered orally daily for 8 weeks. Biochemical analyses including AST, ALT, MPO, and Ammonia levels were measured in serum. In the mice liver tissues, western blot and histological staining were analyzed. As a result, UR dramatically reduced the levels in serum AST, ALT, MPO, and Ammonia levels. UR treatment regulated NADPH oxidase factors expression, and antioxidant enzymes except for GPx-1/2 were significantly increased via Nrf2 activation. Furthermore, pro-inflammatory mediators, such as COX-2 and iNOS were markedly suppressed through the inhibition of NF-κB activation. Expressions of ECM-related protein including α-SMA and Collagen I were noticeably decreased. The additional histological evaluation confirmed that hepatocyte damage and collagenous fiber accumulation were attenuated. Taken together, these data suggest that UR possessed hepatoprotective effects in TAA-induced liver fibrosis via the NF-κB inactivation and Nrf2 activation. Therefore, UR may act as a potential therapeutic drug against liver fibrosis.

Herbal formula MJY2018 protects against Alcohol-induced liver injury mice model (알코올 유발 간 손상 마우스 모델에서 복합 추출물 MJY2018의 간 보호 및 항산화 효과)

  • Kim, Kwang-Youn;Park, Kwang-Il;Cho, Won-Kyung;Yang, Ju-Hye;Ma, Jin-Yeul
    • Herbal Formula Science
    • /
    • v.28 no.2
    • /
    • pp.189-198
    • /
    • 2020
  • Objectives : This study investigated the liver-protective effects of MJY2018, a Herbal formula, against alcoholic fatty liver disease and anti-oxidative effects. Methods : Its effects were investigated in an alcoholic fatty liver disease model in male C57BL/6 mice, which were fed Lieber-DeCarli liquid diet containing ethanol. MJY2018 (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day) were orally administered daily in the alcoholic fatty liver disease mice for 16 days. Results : The results indicate that MJY2018 promotes hepatoprotection by significantly reducing aspartate transaminase (AST) and alanine transaminase (ALT) levels as indicators of liver damage in the serum. Furthermore, MJY2018 reduced accumulation of triglyceride and total cholesterol, increased levels of superoxide dismutase (SOD) and glutathione (GSH) in the livers of the alcoholic fatty liver disease mice model. Additionally, it improved the serum alcohol dehydrogenase (ADH) activity. Conclusions : These results indicate that MJY2018 were effective in improving and protecting oxidative stress and alcoholic liver disease.

Hepatoprotective and antioxidant effects of Monochoria vaginalis against acetaminophen-induced hepatotoxicity in rats

  • Palani, S.;Raja, S.;Sakthivel, K.;Devi, K.;Kumar, B. Senthil
    • Advances in Traditional Medicine
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • The present study was aimed to investigate the hepatoprotective and antioxidant activities of ethanol extract from Monochoria vaginalis (250 mg/kg and 500 mg/kg B/W) on acetaminophen (APAP) induced rat hepatic injury. Monochoria vaginalis is a traditional medicinal plant that is commonly used to treat and improve liver conditions in India and other Asian countries. The development of hepatotoxicity induced by APAP is promoted by oxidative stress. APAP treated group significantly (P < 0.01) elevated the serum enzymatic levels like glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, alkaline phosphatase (SALP), total bilirubin and malondialdehyde (MDA), which were restored towards normalization significantly (P < 0.01) thanol extract of yonochoria vagin is (EEMV). In addition, the EEMV significantly (P < 0.01) elevated the decreased level of total protein and antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase and reduced glutathione. Apart from these, histopathological changes also showed the protective nature of the EEMV against APAP induced hepatic damage in liver tissues. The activity of EEMV at 500 mg/kg B/W was comparable to the standard drug silymarin (25 mg/kg B/W). In conclusion, these data suggest that the EEMV possess hepatoprotective and antioxidant effects against APAP-induced hepatotoxicity and oxidative stress in rats.

Effects of Soshiho-tang on Hydrogen Peroxide-induced Oxidative Damage in Hepatocytes (과산화수소로 유도된 산화성 간세포 손상에 대한 소시호탕(小柴胡湯)의 효과)

  • Seo, Sang-Hee;Oh, Su-Young;Lee, Ji-Seon;Cho, Won-Kyung;Kim, Tae-Soo;Ma, Jin-Yeul
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Objectives : The aim of this study was to investigate the hepatoprotective effect of Soshiho-tang (SSH) in mouse primary liver cells against hydrogen peroxide ($H_2O_2$)-induced oxidative stress. We also elucidated the molecular mechanism of hepatoprotective effect by SSH. Methods : Cell viability, level of ALT, AST and LDH, intracellular ROS level, mRNA expression and activity of antioxidant enzymes were used to evaluate hepatoprotection of SSH against $H_2O_2$. Target gene expressions were analyzed by real-time PCR. Results : Pre-treatment with SSH for 1 hour prevented cytotoxicity against $H_2O_2$. $H_2O_2$-induced ROS level decreased under SSH pre-treatment. mRNA expression of GPx and SOD increased in SSH-treated cells. In addition, HSP72 and HSP40 gene expression were elevated under SSH-treatment. Conclusions : These results indicate that SSH protects mouse primary liver cells from $H_2O_2$-induced oxidative injury. This hepatoprotective activity of SSH is mediated by decreasing intracellular ROS and increasing antioxidant enzyme expression (GPx and SOD) and stress response protein (HSP72 and HSP40).

Protective Effects of Scutellaria barbata Against Rat Liver Tumorigenesis

  • Dai, Zhi-Jun;Wu, Wen-Ying;Kang, Hua-Feng;Ma, Xiao-Bin;Zhang, Shu-Qun;Min, Wei-Li;Lu, Wang-Feng;Lin, Shuai;Wang, Xi-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.261-265
    • /
    • 2013
  • Scutellaria barbata D. Don (S. barbata), a traditional Chinese medicine, is used to treat cancers, inflammation, and urinary diseases. This study aimed to determine any protective effects of S. barbata crude extract (CE-SB) against rat liver tumorigenesis induced by diethylnitrosamine (DENA). Liver malfunction indices in serum were measured by biochemical examination. Hematoxylin and eosin staining was performed to examine liver pathology. Contents of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in liver homogenates to evaluate oxidative stress. The levels of liver malfunction indices in the CE-SB groups, especially in the CE-SB high dose group, were lower than that of the model group (P<0.05). The results from histological examination indicated that the number of liver nodules in the CE-SB groups decreased compared with the model group (P<0.05). Content of MDA determined in liver was significantly decreased, and level of SOD elevated by CE-SB. CE-SB can inhibit experimental liver tumorigenesis and relieve hepatic injury in rats.

Protective Effect of Dandelion Extracts on Ethanol-Induced Acute Hepatotoxicity in C57BL/6 Mice

  • Liu, Xiao-Yu;Ma, Jie;Park, Chung-Mu;Chang, Hee-Kyung;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Dandelion (Taraxacum officinale) has been widely used as an anti-inflammatory agent in oriental medicine. In the current study, we investigated the protective effect, and the possible mechanism, of dandelion extracts against ethanol-induced acute hepatotoxicity in C57BL/6 mice. Dandelion water and ethanol extract was administered at 2 g/kg body weight (BW) once daily for 7 consecutive days, whereas control and ethanol groups received water by gavage. Ethanol (50% ethanol; 6 g/kg BW) was administered 12 hr before sacrificing the mice in order to generate liver injury. Significantly increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as liver triglyceride (TG) and cholesterol levels were attenuated by dandelion supplementation. In addition, dandelion extracts not only enhanced alcohol dehydrogenase (ADH) and anti-oxidative enzyme activities, but reduced lipid peroxidation. Cytochrome P450 2E1 (CYP 2E1), one of the critical enzymes xenobiotic metabolism, expression was lower with ethanol treatment but restored by dandelion supplementation. These results were confirmed by improved histopathological changes in fatty liver and hepatic lesions induced by ethanol. In conclusion, dandelion could protect liver against ethanol administration by attenuating of oxidative stress and inflammatory responses.

Protective Effects of Yinjinchunggan-tang (YJCGT) on Alcohol-induced Oxidative Stress (인진청간탕(茵蔯淸肝湯)의 알코올성 산화스트레스에 대한 보호효과 연구)

  • Kim, Young-Tae;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.550-564
    • /
    • 2011
  • Objectives : Oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Previous studies have shown that treatment with Yinjinchunggan-tang (Yinchenqinggan-tang, YJCGT) has protective effects on alcoholic liver disease. The aim of this study was to investigate the protective effects of YJCGT on alcohol-induced oxidative stress. Materials and Methods : In vitro, we evaluated the inhibitory activities of YJCHT on DPPH(1,1-diphenyl-2-picryl-hydrazyl), xanthine oxidase, trypsin, and hyaluronidase. In a cell culture model, we measured cell viability and proliferation, and the activities of superoxide dismutase (SOD), and catalase (CAT) after YJCGT treatment in C34 and E47 cell lines, and HepG2 cells transfected with/ without cytochrome P450IIE1 (CYP2E1) gene. In vivo, we estimated serum level of hepatic biochemical markers, and alcohol concentration in the blood. Results : YJCGT showed significant free radical scavenging activity against DPPH and xanthine oxidase and decreased hyaluronidase activity effectively in vitro. YJCGT also increased cell viability, and proliferation in C34 and in E47 cell lines, and increased activities of superoxide dismutase, and catalase in C34 and in E47 cell lines. YJCGT reduced serum AST, LDH, and total cholesterol level in some of the results, and reduced blood alcohol concentration in vivo, as well. Conclusions : This study suggests that YJCGT has protective effects on oxidative stress by inhibiting alcohol-induced suppression of antioxidant enzyme activities.

Protective Effect of Gardenia jasminoides Against Carbon Tetrachloride-Induced Acute Hepatotoxicity (사염화탄소 유도 급성 간독성 모델에서 치자의 간 보호 효과)

  • Shin, Jun-Kyu;Kim, Hyo-Yeon;Lee, Sun-Mee
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • Gardenia jasminoides is one of the most widely used herbal preparations for the treatment of liver disorders. This study evaluated the potential beneficial effect of G. jasminoides in a mouse model of carbon tetrachloride ($CCl_4$)-induced liver injury. The mice were treated intraperitoneally with $CCl_4$ (10 ${\mu}l$/kg). They received G. jasminoides (30, 100, 300 mg/kg) 48 h, 24 h and 2 h before and 6 h after administering $CCl_4$. The serum activities of aminotransferase and the hepatic level of malondialdehyde were significantly higher 24 h after the $CCl_4$ treatment, while the concentration of reduced glutathione was lower. These changes were attenuated by G. jasminoides. $CCl_4$ increased the level of circulating tumor necrosis factor-$\alpha$ (TNF-$\alpha$) markedly, which was reduced by G. jasminoides. The levels of hepatic inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression were markedly higher after the $CCl_4$ treatment. G. jasminoides diminished these alterations. $CCl_4$ increased the level of TNF-$\alpha$, iNOS and COX-2 mRNA expressions, and these increases were attenuated by G. jasminoides. These results suggest that G. jasminoides alleviates $CCl_4$-induced liver injury, and this protection is likely due to the reduced oxidative stress and the downregulation of proinflammatory mediators.

Protective effect of Citri Unshius Pericarpium against cadmium-induced liver damage in mice (카드뮴으로 인한 마우스 간 손상에 대한 진피의 보호효과)

  • Noh, Gyu Pyo;Lee, Jong Rok;Kim, Jae Kwang;Park, Sang Mi;Park, Sook Jahr;Kim, Sang Chan
    • The Korea Journal of Herbology
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Objective : Citri Unshius Pericarpium (Citrus unshiu peel) has been used in Korean medicine to treat indigestion, vomiting, coughing and phlegm. This study investigated the hepatoprotective effect of ethanol extract of Citrus unshiu peel (CEE) in cadmium (CdCl2)-treated mouse model. Methods : CEE was dissolved in water and administered orally to mice once a day for 7 consecutive days. The mice were then exposed to a single intraperitoneal (i.p.) injection of cadmium (4 mg/kg body weight) to induce acute hepatotoxicity. At the end of the experiment, blood and liver tissue samples were collected, analyzed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), and histopathological evaluation. Liver damage was assessed as the percentage of degenerative areas of the hepatic parenchyma, the number of degenerative hepatocytes, and the number of infiltrated inflammatory cells. Results : In cadmium-treated rats, pretreatment with CEE significantly reduced the serum ALT and AST levels associated with liver damage. Histopathologically, CEE prevented degenerative changes on the hepatic tissues including confluent necrosis, congestions and infiltration of inflammatory cells. CEE also reduced the elevation of oxidative stress markers (nitrotyrosine and 4-hydroxynonenal) and apoptosis markers (cleaved caspase-3 and cleaved PARP) positive cells. PARP protein expression in liver tissue was also restored by CEE. Conclusion : This study showed that CEE exerted antioxidant and anti-apoptotic effects against cadmium-induced liver injury. Thus, it can be concluded that CEE can be used to prevent liver damage caused by cadmium.