• Title/Summary/Keyword: stress and liver injury

Search Result 105, Processing Time 0.025 seconds

Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling

  • Ari Kwon;Yun Seok Kim;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.341-348
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.

Metformin ameliorates bile duct ligation-induced acute hepatic injury via regulation of ER stress

  • Lee, Chi-Ho;Han, Jung-Hwa;Kim, Sujin;Lee, Heejung;Kim, Suji;Nam, Dae-Hwan;Cho, Du-Hyong;Woo, Chang-Hoon
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.311-316
    • /
    • 2020
  • Cholestasis is a condition in which the bile duct becomes narrowed or clogged by a variety of factors and bile acid is not released smoothly. Bile acid-induced liver injury is facilitated by necrotic cell death, neutrophil infiltration, and inflammation. Metformin, the first-line treatment for type 2 diabetes, is known to reduce not only blood glucose but also inflammatory responses. In this study, we investigated the effects of metformin on liver injury caused by cholestasis with bile acid-induced hepatocyte injury. Static bile acid-induced liver injury is thought to be related to endoplasmic reticulum (ER) stress, inflammatory response, and chemokine expression. Metformin treatment reduced liver injury caused by bile acid, and it suppressed ER stress, inflammation, chemokine expression, and neutrophil infiltration. Similar results were obtained in mouse primary hepatocytes exposed to bile acid. Hepatocytes treated with tauroursodeoxycholic acid, an ER stress inhibitor, showed inhibition of ER stress, as well as reduced levels of inflammation and cell death. These results suggest that metformin may protect against liver injury by suppressing ER stress and inflammation and reducing chemokine expression.

Hepatic ischemia-reperfusion injury with respect to oxidative stress and inflammatory response: a narrative review

  • Eun Kyung Choi;Dong Gun Lim
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • Hepatic ischemia-reperfusion injury is a major complication of liver transplantation, trauma, and shock. This pathological condition can lead to graft dysfunction and rejection in the field of liver transplantation and clinical hepatic dysfunction with increased mortality. Although the pathological mechanisms of hepatic ischemia-reperfusion injury are very complex, and several intermediators and cells are involved in this phenomenon, oxidative stress and inflammatory responses are the key processes that aggravate hepatic injury. This review summarizes the current understanding of oxidative stress and inflammatory responses and, in that respect, addresses the therapeutic approaches to attenuate hepatic ischemia-reperfusion injury.

N-acetylcysteine modulates cyclophosphamide-induced immunosuppression, liver injury, and oxidative stress in miniature pigs

  • Kang, Kyung Soo;Shin, Sangsu;Lee, Sang In
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.348-355
    • /
    • 2020
  • Cyclophosphamide, a cytotoxic anticancer agent, induces immunosuppression and has several adverse effects. N-acetylcysteine alleviates oxidative stress, liver injury, and intestinal tissue damage. The present study examined whether N-acetylcysteine modulates the adverse effects of cyclophosphamide in pigs. Miniature pigs (n = 15) were used as an experimental model to evaluate the effects of N-acetylcysteine treatment on immune reactions, liver injury, and oxidative stress after cyclophosphamide challenge. Corn-soybean meal based dietary treatments were as follows: control diet with either saline injection, cyclophosphamide injection, or 0.5% N-acetylcysteine and cyclophosphamide injection. N-acetylcysteine increased the number of immune cells and decreased TNF-α production after cyclophosphamide injection and decreased TNF-α, IFN-γ, NF-κB, and IL-8 expression and increased IL-10 expression in peripheral blood mononuclear cells. Serum levels of alanine transaminase and aspartate aminotransferase decreased, superoxide dismutase activity increased, and malondialdehyde activity decreased following N-acetylcysteine treatment after cyclophosphamide injection. N-acetylcysteine decreases immunosuppression, liver injury, and oxidative stress in cyclophosphamide-challenged miniature pigs. The present study suggests that N-acetylcysteine has therapeutic application in livestock for modulating immune reactions, liver injury, and oxidative stress.

Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/Reperfusion Injury during Liver Transplantation

  • Kwon, Jae Hyun;Lee, Jooyoung;Kim, Jiye;Kirchner, Varvara A.;Jo, Yong Hwa;Miura, Takeshi;Kim, Nayoung;Song, Gi-Won;Hwang, Shin;Lee, Sung-Gyu;Yoon, Young-In;Tak, Eunyoung
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.672-685
    • /
    • 2019
  • Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygen-glucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.

Hepatoprotective Effect of Green Tea (Camellia sinensis) Extract against Tamoxifen-induced Liver Injury in Rats

  • El-Beshbishy, Hesham A.
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.563-570
    • /
    • 2005
  • Tamoxifen citrate (TAM), is widely used for treatment of breast cancer. It showed a degree of hepatic carcinogenesis. The purpose of this study was to elucidate the antioxidant capacity of green tea (Camellia sinensis) extract (GTE) against TAM-induced liver injury. A model of liver injury in female rats was done by intraperitoneal injection of TAM in a dose of $45\;mg\;Kg^{-1}\;day^{-1}$, i.p. for 7 successive days. GTE in the concentration of 1.5%, was orally administered 4 days prior and 14 days after TAM-intoxication as a sole source of drinking water. The antioxidant flavonoid; epicatechin (a component of green tea) was not detectable in liver and blood of rats in either normal control or TAM-intoxicated group, however, TAM intoxication resulted in a significant decrease of its level in liver homogenate of tamoxifen-intoxicated rats. The model of TAM-intoxication elicited significant declines in the antioxidant enzymes (glutathione-S-transferase,glutathione peroxidase, superoxide dismutase and catalase) and reduced glutathione concomitant with significant elevations transaminase) levels. The oral administration of 1.5% GTE to TAM-intoxicated rats, produced significant increments in the antioxidant enzymes and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases levels. The data obtained from this study speculated that 1.5% GTE has the capacity to scavenge free radical and can protect against oxidative stress induced by TAM intoxication. Supplementation of GTE could be useful in alleviating tamoxifen-induced liver injury in rats.

The Effect of Dimethyl Dimethoxy Biphenyl Dicarboxylate (DDB) against Tamoxifen-induced Liver Injury in Rats: DDB Use Is Curative or Protective

  • El-Beshbishy, Hesham A.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.300-306
    • /
    • 2005
  • Tamoxifen citrate is an anti-estrogenic drug used for the treatment of breast cancer. It showed a degree of hepatic carcinogenesis, when it used for long term as it can decrease the hexose monophosphate shunt and thereby increasing the incidence of oxidative stress in liver rat cells leading to liver injury. In this study, a model of liver injury in female rats was done by intraperitoneal injection of tamoxifen in a dose of 45 mg/kg body weight for 7 successive days. This model produced a state of oxidative stress accompanied with liver injury as noticed by significant declines in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) in a dose of 200 mg/kg body weight daily for 10 successive days, resulted in alleviation of the oxidative stress status of tamoxifen-intoxicated liver injury in rats as observed by significant increments in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases; sGPT and sGOT levels. The administration of DDB before tamoxifen intoxication (as protection) is more little effective than its curative effect against tamoxifen-induced liver injury. The data obtained from this study speculated that DDB can mediate its biochemical effects through the enhancement of the antioxidant enzyme activities and reduced glutathione level as well as decreasing lipid peroxides.

The Effects of Sagunja-tang on Liver Injury of Mice Induced by $CCl_4$ (사군자탕(四君子湯)이 $CCl_4$에 의한 생쥐의 간 조직 손상에 미치는 영향)

  • Kim, Young-Kyun;Cho, Su-In
    • Herbal Formula Science
    • /
    • v.9 no.1
    • /
    • pp.375-385
    • /
    • 2001
  • Objectives : This study was carried out to research the protective effects of Sagunja-Tang(SA) through in vivo experiments, and tried to investigate the relation between oxidation of liver tissues and deficiency of Qi. Methods : Acute liver injury which initiated from free radical induced by $CCl_4$, were applied to mice and metabolic data were obtained. In order to measure the degree of liver injury, serum level of alanine aminotransferase(AST), aspartate aminotransferase(ALT), creatinine, blood urea nitrogen(BUN), total protein(TP) and glucose were measured. Lipid peroxidation of liver slice was examined by measuring malondialdehyde(MDA), a product of lipid peroxidation. Results : SA had protective effects on $CCl_4$ induced acute liver injury by decreasing serum level of ALT. Kidney injury was induced by injection of $CCl_4$ too, and SA protected kidney injury by decreasing serum level of creatinine and BUN. Conclusions : Through this study, we found that SA have healing effects on liver and kidney injury of $CCl_4$ induced oxidative stress that is similar to deficiency of Qi. And further studies have to be followed to certify the mechanisms.

  • PDF

Ga-mi-Yuk-Mi-Jihwang-Tang Ameliorates LPS-injected acute Liver Injury via Regulation of Sirtuin6 in Inflammasome Triggered-pyroptosis Using Mice Model

  • 임수아;조명래;김태수;성수희;김보람;최경민;정진우
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.114-114
    • /
    • 2022
  • Excessive endogenous endotoxin, especially lipopolysaccharide (LPS) reflux from gastrointestinal (GI) tract to the liver tissue is one of the most serious reasons of severe and acute liver injury which is mainly mediated by Kupffer cell activations. However, there is no clear molecular clues to explain the exact pathophysiological mechanism and effective drugs available till nowadays. We aimed to comprehend the pathophysiological features of LPS-induced liver injury and evaluate the efficacies of potential therapeutic drug, Ga-mi-Yuk-Mi-Jihwang-Tang (GYM), which is composed of herbal plants. GYM remarkably caused to normalize hepatic inflammation and oxidations against LPS-induced liver injury by evidence of serum liver enzymes, histopathological analysis, both hepatic protein and gene expression levels of pro-inflammatory cytokines, nitric oxide levels, and hepatic tissue levels of reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 4-hydroxyneoneal, respectively. To assess molecular events in the hepatic tissue, we further found hepatic Sirtuin6 (Sirt6) levels were considerably depleted by LPS injection with aberrant alterations of Nrf2/HO-1 signaling pathways, whereas administration with GYM notably exerted to normalize these abnormalities. Our results exhibited that GYM would be one of target drug to diminish hepatic inflammation as well as oxidative stress by regulation of hepatic Sirt6 levels.

  • PDF

Panax ginseng Meyer prevents radiation-induced liver injury via modulation of oxidative stress and apoptosis

  • Kim, Hyeong-Geug;Jang, Seong-Soon;Lee, Jin-Seok;Kim, Hyo-Seon;Son, Chang-Gue
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • Background: Radiotherapy is one of the most important modalities in cancer treatment; however, normal tissue damage is a serious concern. Drug development for the protection or reduction of normal tissue damage is therefore a clinical issue. Herein, we evaluated the protective properties of Panax ginseng Meyer and its corresponding mechanisms. Methods: C56BL/6 mice were orally pretreated with P. ginseng water extract (PGE; 25 mg/kg, 50 mg/kg, or 100 mg/kg) or intraperitoneally injected melatonin (20 mg/kg) for 4 d consecutively, then exposed to 15-Gy X-ray radiation 1 h after the last administration. After 10 d of irradiation, the biological properties of hematoxicity, fat accumulation, histopathology, oxidative stress, antioxidant activity, pro-inflammatory cytokines, and apoptosis signals were examined in the hepatic tissue. Results: The irradiation markedly induced myelosuppression as determined by hematological analysis of the peripheral blood. Steatohepatitis was induced by X-ray irradiations, whereas pretreatment with PGE significantly attenuated it. Oxidative stress was drastically increased, whereas antioxidant components were depleted by irradiation. Irradiation also notably increased serum liver enzymes and hepatic protein levels of pro-inflammatory cytokines. Those alterations were markedly normalized by pretreatment with PGE. The degree of irradiation-induced hepatic tissue apoptosis was also attenuated by pretreatment with PGE, which was evidenced by a terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay, western blotting, and gene expressions analysis, particularly of apoptotic molecules. Conclusion: We suggest that PGE could be applicable for use against radiation-induced liver injury, and its corresponding mechanisms involve the modulation of oxidative stress, inflammatory reactions, and apoptosis.