• Title/Summary/Keyword: stress - strain relationship

Search Result 605, Processing Time 0.024 seconds

Effect of Die-upset Process on Magnetic Properties and Deformation Behavior of Nanostructured Nd-Fe-B Magnets

  • Zhao, R.;Zhang, W.C.;Li, J.J.;Wang, H.J.;Zhu, M.G.;Li, W.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.294-299
    • /
    • 2011
  • Nd-Fe-B high performance magnets were prepared by die-upset forging. The effects of the deformation parameters on magnetic properties and flow stress were studied. Deformation temperatures in the range of $600{\sim}900^{\circ}C$ enable to achieve an effective anisotropy and temperature $800^{\circ}C$ proves to be suitable for deformation of Nd-Fe-B magnets. The amount of c-axis alignment along the press direction seems to depend on the amount of deformation and a saturation behavior is shown at deformation ratio of 75%. Magnetic properties are also related to strain rate, and maximum energy product is attained at an optimum strain rate of ${\varphi}=1{\times}10^{-2}s^{-1}$. By analyzing the relationship of stress and strain at different deformation temperature during die-upset forging process, deformation behavior of Nd-Fe-B magnets was studied and parameters for describing plastic deformation were obtained. Nd-rich boundary liquid phase, which is additionally decreasing the flow stress during deformation, is supposed to play the role of diffusion path and enhance the diffusion rate.

Unconfined Compressive Stress-Strain Behavior of Cemented Granular Geomaterials (강화된 입상지반재료의 일축압축 응력-변형거동)

  • Park, Seong-Wan;Cho, Chung Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.183-190
    • /
    • 2009
  • It is necessary to predict the deformation and stresses on soils to establish the nonlinear stress-strain relationship of geomaterials at various strain levels. Especially, a need exists to establish the pre-failure nonlinear characteristic of cemented granular geomaterials used in road constructions. In this paper, therefore, conventional granular soils were mixed with various cementing materials, such as cement and fly ash from coal combustion by-products. Then, the normalized nonlinear behavior of cemented geomaterials was assessed using unconfined compression test. In addition, various constitutive models of soils were evaluated for estimating pre-failure non-linear behavior of cemented geomaterials from the test results.

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part III) -Shear Deformation Characteristics- (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(III) -전단변형 특성-)

  • 박춘식;황성춘;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2000
  • Anisotropy of stiffiness, from extremely small strains to post-failure strains, of isotropically consolidated air-pulviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to 10% were obtained with measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. It was found that the maximum shear modulus Gmax was irrespective of the angle $\delta$of the $\sigma$1 direction relative to the bedding plane. However, the normalized Gmax was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness increased as decreased.

  • PDF

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part II) -Deformation Characteristics at Extremely Small Strain Level (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(II)-미소변형률에서의 변형특성 이방성)

  • 박춘식;장정욱
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.33-46
    • /
    • 1998
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain at the specimen boundaries. It was found that the maximum Young's modulus $E_{max}$ was irrespective of the angle $\delta$ of the $\delta_1$ direction relative to the bedding plane. However, the normalized$ E_{max}$ was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness was increased as $\delta$ decreased.

  • PDF

The Analysis of Soil Behaviour by Double Surface Work-hardening Constitutive Model (복합항복면 일-경화구성 모델을 이용한 지반거동해석)

  • Youn, Il-Ro;Oh, Se-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • Decomposed granite soils are in a wide range of conditions depending on the degrees of weathering. This paper is intended to examine laboratory tests such as consolidation tests and conventional triaxial compression tests conducted in order to find out the mechanical properties of Cheongju granite soil. Along with the foregoing, the results of basic physical tests conducted in order to grasp the physical properties of Cheongju granite soil were described and based on the results, methods to calculate the mechanical parameters of numerical approaches using Lade's double surface work-hardening constitutive model were examined. Finally, it is intended to explain the stress properties of Cheongju granite soil used as a geotechnical material based on its shear behavior and critical state concept using the results of isotropic consolidation tests and triaxial compression tests. As a conclusion, it can be seen that in the relationship between confining stress and maximum deviator stress, the slope is maintained at a constant value of 2.95. In the drained CTC test, maximum deviator stress generally existed in a range of axial strain of 6~8% and larger dilatancy phenomena appeared when confining stress was smaller. Finally, based on the results of the CTC tests on Cheongju granite soil, although axial strain, deviator stress and pore water pressure showed mechanical properties similar to those of overconsolidated soil, Cheongju granite soil showed behavior similar to that of normally consolidated soil in terms of volumetric strain.

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

Constitutive model for ratcheting behavior of Z2CND18.12N austenitic stainless steel under non-symmetric cyclic stress based on BP neural network

  • Wang, Xingang;Chen, Xiaohui;Yan, Mingming;Chang, Miaoxin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.517-525
    • /
    • 2018
  • The specimens made by Z2CND18.12N austenitic stainless steel were conducted on a 100 kN closed loop servo hydraulic tension-compression testing machine with a digital controller. Uniaxial tension and uniaxial ratcheting effect tests were carried out at $25^{\circ}C$. Moreover, Uniaxial tension tests were conducted at $150^{\circ}C$, $250^{\circ}C$ and $350^{\circ}C$. Based on these experimental data, the prediction models of stress-strain curve and the relationship of ratcheting strain and number of cycles were established by the algorithm principle of BP neural network. The results indicated that the predicted results of neural network model were in well agreement with experimental data. It was found that the BP neural network model had high validity and accuracy.

High Temperature Plastic Deformation Behaviors of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy (벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 소성 변형 특성)

  • Lee K. S.;Ha T. K.;Ahn S. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.272-276
    • /
    • 2001
  • Multicomponent $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk matallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state.1) In this study, DSC and X-ray diffractometry have been performed to confirm the amorphous structure of the master $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy. To investigate the mechanical properties and deformation behaviors of the bulk metallic $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$ and at the various initial strain rates from $2{\times}10^{-4}s^{-1}\;to\;2{\times}10^{-2}s^{-1}$. There are two types of nominal stress-strain curves. The one shows linear stress-strain relationship meaning fracture at maximum stress, the other shows plastic deformation including steady-state flow. Also DSC analysis for the compressed specimens has been performed to investigate the change of thermal stability and crystallization behavior for the various test conditions.

  • PDF

Study on the Undrained Shear Strength Characteristics (반월지역 해성점토의 비배수 전단강도 특성에 관한 연구)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.90-99
    • /
    • 1994
  • To investigate the undrained shear strength characteristics of marine soils with high water content, high compressibility and weak bearing capacity, a series of undrained triaxial tests with pore pressure measurements on undisturbed and disturbed Banwol marine clay in normally consolidated and overconsolidated states is carried out. The results and main conclusions of this study are summarized as follows : 1 . When the consolidation pressure is increased, the maximum deviator stress of disturbed and undistubed clay in normally consolidated state is increased. Pore pressure parameters and internal friction angle of undisturbed clay are greater than those of disturbed clay. 2. The relationship between pore pressure and axial strain of undisturbed clay in normally consolidated state can be expressed as a hyperbolic function like stress-strain relation proposed by Kondner. 3. In the pore pressure-axial strain relation of disturbed clay in normally consolidated state, failure ratio R'f is greatly deviated in the range of 0.7~0.9 proposed by Christian and Desai. 4. For overconsolided clay, when overconsolidation ratio (OCR) is increased, normalized maximum deviator stress is increased and maximum pore pressure is decreased gradually. 5. Cohesion of overconsolidated clay is greater than that of nomally consolidated clay and internal friction angle slightly is decreased. 6. Pore pressure parameter at failure (Af) of overconsolidated clay is varied with OCR, Af becomes negative values with increment in OCR

  • PDF

Nonlinear Analysis of Stress-strain for RC Panel Subjected to Shear (순수전단이 작용하는 RC Panel의 응력-변형률 비선형해석)

  • Cha, Young-Gyu;Kim, Hak-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.175-181
    • /
    • 2010
  • The three truss models(equilibrium truss model, Mohr compatibility truss model, and the soften truss model) based on a rotating angle is called the rotating-angle model. The three rotating-angle models have a common weakness: they are incapable of predicting the so-called "contribution of concrete". To take into account this "contribution of concrete", the modern truss model(MCFT, STM) treats a cracked reinforced concrete element as a continuous material. By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, MTM is capable of producing the nonlinear analysis of reinforced concrete structures composed of membrane element. In this paper, an efficient algorithm is proposed for the solution of proposed model incorporated with failure criteria. This algorithm is used to analyze the behavior of reinforced membrane element using the results of Hsu test.