• Title/Summary/Keyword: stress/strain effect

Search Result 1,398, Processing Time 0.028 seconds

A Pilot study of poroelastic modulus measurement in micro-bone tissue (미세 골조직의 공극탄성계수 측정을 위한 예비 연구)

  • 박영환;홍정화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1038-1041
    • /
    • 2004
  • In this study, developed a micro-level experimental setup to measure pore pressure and poroelastic modulus in various strain and strain rate about a stress in micro-structure of bone tissue. It is essential device in the development of the model to analysis the interstitial bone fluid flow of the lacuno-canalicular system to be known that would effect on the bone remodeling. The constitution of the experimental setup is as follows, microscopic image processing system; actuator control unit; load measurement system. A pilot study was used an artificial chemical wood to have similar poroelastic property of bone matrix and conducted to validate the suitability of the measurement system.

  • PDF

Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

Analysis of laminated and sandwich spherical shells using a new higher-order theory

  • Shinde, Bharti M.;Sayyad, Atteshamudin S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.19-40
    • /
    • 2020
  • In the present study, a fifth-order shear and normal deformation theory using a polynomial function in the displacement field is developed and employed for the static analysis of laminated composite and sandwich simply supported spherical shells subjected to sinusoidal load. The significant feature of the present theory is that it considers the effect of transverse normal strain in the displacement field which is eliminated in classical, first-order and many higher-order shell theories, while predicting the bending behavior of the shell. The present theory satisfies the zero transverse shear stress conditions at the top and bottom surfaces of the shell. The governing equations and boundary conditions are derived using the principle of virtual work. To solve the governing equations, the Navier solution procedure is employed. The obtained results are compared with Reddy's and Mindlin's theory for the validation of the present theory.

Pre-strain Induced Anisotropy of Filled Natural Rubber (선인장에 의하여 유도된 천연고무의 비등방성)

  • Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • The objective of this study was to investigate factor that influences the development of anisotropy in carbon black filled natural rubber vulcanizates. Chain orientation affects tensile strength, stiffness. Parallel sample shows low stress at low deformation, but have high stiffness at high deformation compared to isotropic or perpendicular samples. This study shows that natural rubber(NR) exhibits much larger tensile anisotropy at high strains than SBR. It seems that the parallel sample of NR is dominated by orientation effect at high strains. This oriented chain is expected to act as nuclei for following crystallization during second stretching and facilitates the strain-induced crystallization.

  • PDF

Wind-induced fatigue loading of tubular steel lighting columns

  • Robertson, A.P.;Hoxey, R.P.;Short, J.L.;Burgess, L.R.;Smith, B.W.;Ko, R.H.Y.
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 2001
  • Two 12 m high tubular steel lighting columns have been instrumented to determine the wind-induced fatigue loading experienced by such columns. Each column supported a single luminaire mounted on a 0.5 m long bracket. One column was planted in soil, and the other bolted through a welded baseplate to a substantial concrete base. The columns were strain gauged just above the shoulder weld which connected the main shaft to the larger base tube. Forced vibration tests were undertaken to determine the natural frequencies and damping of the columns. Extensive recordings were made of response to winds with speeds from 4 m/s to 17 m/s. Selected records were analysed to obtain stress cycle counts and fatigue lives. Mean drag coefficients were also derived from the strain data to investigate experimentally the effect of Reynolds Number.

Time dependent service load behaviour of prestressed composite tee beams

  • Uy, Brian
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.307-327
    • /
    • 1997
  • This paper is concerned with the time dependent service load behaviour of prestressed composite tee beams. The effects of creep and shrinkage of the concrete slab are modelled using the age adjusted effective modulus method and a relaxation approach. The tendon strain is determined considering compatibility of deformations and equilibrium of forces between the tendon and the composite tee beam. A parametric study is undertaken to study the influence of various aspects on the stress, strain and deformations of the concrete slab, steel beam and prestressing tendon. The effect of loading type and tendon relaxation has also been considered for various types of prestressing tendon materials. Recommendations are then made in relation to adequate span to depth ratios for varying levels of prestressing force.

축대칭 벌징형 하이드로포밍 공정에대한 이론 및 실험적 연구

  • 양동열;최선준;정완진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1990.04a
    • /
    • pp.83-88
    • /
    • 1990
  • The study is concerned with the theoretical and experimental investigation of axisymmetric fluid pressure-drive hydronforming of sheet metal by forming over the die cavity. The rigid-plastic finite element method is employed to calculate the stress and strain distribution The effect of blank size and die radius is also studied in the finite element analysis. Experiments are carried out for hydroforming of cold rolled steel sheets under various process conditions. The computational results are compared with the experimental results for the forming pressure vs. pole displacement relations and strain distributions. Comparison has shown that theoretical predictions by the finite element method are in good agreement with the experimental observations. Thus, it is shown that the rigid-plastic finite element method is effectively used in the analysis of axisymmetric fluid pressure-driven hydroforming process.

The Effect of Deformation Heat to the High Strain rate Plastic Flow (고변형율 속도 유동곡선에 미치는 가공열의 영향)

  • 정재영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.119-122
    • /
    • 2000
  • Dynamic deformation of metallic materials mostly accompanies substantial amounts of deformation heat. Since the flow stress of deformation is sensitive to temperature implication of heat due to plastic work is essential to the evaluation of constitutive relations. In this study a series of compression tests were conducted for SAF 2507 super duplex stainless steel and the accumulation of deformation heat was calculated through numerical integration method. Isothermal flow surfaces were deduced from subsequent logarithmic interpolation. Simple closed die forging process was analyzed and optimized with commercial FEM code applying both raw and calibrated material database.

  • PDF

Characteristics of Strength and Fracture in Strength Mismatched Joint by Dynamic Loading (동적하중 하에서의 강도적 불균질부를 갖는 용접이음재의 강도 및 파괴 특성)

  • ;望月正人;大細充;;豊田政男
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.55-63
    • /
    • 2003
  • Welded joint generally has heterogeneity of strength, material, and fracture toughness and it is important to understand the characteristics of material strength and fracture of welded joint considering heterogeneous effect. Characteristics of strength and fracture of an undermatched joint under dynamic loading was studied by round-bar tension tests and thermal elastic-plastic analyses in this paper. The strength and fracture of the undermatched joints should be evaluated based on the effects of the strain rate and the temperature including temperature rise during the dynamic loading. The differences of fracture characteristics like such as ductile-to-brittle transition behavior are well precisely explained from the stress-strain distribution obtained by numerical analysis.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.