• Title/Summary/Keyword: stress/strain analyses

Search Result 366, Processing Time 0.024 seconds

Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber (초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng;Kim, Dong-Wook
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.

Structural strength evaluation of Freight Car Carbody for transportation of cold-rolled coils (냉연코일 수송화차 차체의 구조 강도 평가)

  • Kwon, Sung-Tae;Kim, Jeong-Guk;Seo, Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.775-779
    • /
    • 2007
  • The structural strength assessment of a carbody was performed using F.E. analysis and static test to verify the structural safety of newly manufactured carbody of a freight car. The freight car for the transportation of cold-rolled coils in steel making company was designed with SS400 steel for underframe and SM490A steel for bracket. Prior to the evaluation of structural strength, commercial finite element method(FEM) software was used for the stress and structural analyses on stress distribution in a carbody of freight car. The strain gages were attached on the carbody based on the FEM results. The actual vertical loading test and horizontal compression loading test were conducted, and the stress and displacement were obtained. Finally, the structural strength of carbody was evaluated by using a engineering techniques.

  • PDF

Behaviour of lead-rubber bearings

  • Mori, Atsushi;Moss, P.J.;Carr, A.J.;Cooke, N.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • Experimental work undertaken to investigate the behaviour of lead-rubber bearings under compression and a combination of compression and shear or rotation has been reported on elsewhere. However, it is difficult to determine the state of stress within the bearings in terms of the applied forces and the interaction between the lead plug and the steel shims and elastomeric layers. In order to supply some of the missing information about the stress-strain state within the bearings, an analytical study using the finite element method was carried out. The available experimental results were used to validate the model and although agreement was not as good as expected (on account of difficulties in modelling the lead plug), the analyses did provide some information about the state of the stress within the bearing.

Fatigue Assessment of Butt Joint with Weld Defect in Steel Bridge (강교 용접 결함부의 피로평가)

  • Juhn, Gui Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.98-107
    • /
    • 1998
  • There are many weld defects such as surface crack, lack of fusion, and imcomplete penetration in the butt joint of the existing steel bridges. The crack-like defects may significantly reduce the fatigue life of the structure. This paper presents the procedure and the results of the fatigue assessment of the butt joints with weld defect in the existing steel girder bridge. The butt joints with imcomple penetration were instrumented with strain gages to determine the stress histogram under normal traffic. Based on the measured stress histogram the crack propagation analyses were performed for the fatigue assesment. By using the suggested procedure and methodology, one can decide the time of periodic inspection and the necessity of repair of the butt joints with serious weld defects in the existing steel bridge.

  • PDF

Optimization of hybrid composite plates using Tsai-Wu Criteria

  • Mehmet Hanifi Dogru;Ibrahim Gov;Eyup Yeter;Kursad Gov
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • In this study, previously developed algorithm is used for Optimization of hybrid composite plates using Tsai-Wu criteria. For the stress-based Design Optimization problems, Von-Mises stress uses as design variable for isotropic materials. Maximum stress, maximum strain, Tsai Hill, and Tsai-Wu criteria are generally used to determine failure of composite materials. In this study, failure index value is used as design variable in the optimization algorithm and Tsai-Wu criteria is utilized to calculate this value. In the analyses, commonly used design domains according to different hybrid orientations are optimized and results are presented. When the optimization algorithm was applied, 50% material reduction was obtained without exceeding allowable failure index value.

Structural and Modal Analysis of Treadmill Roller (트레드밀 롤러의 구조/진동해석)

  • Lee Jong Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.62-68
    • /
    • 2005
  • The objective of this study is structural analysis and modal analysis of treadmill roller. A 3D finite element model is implemented to calculate the stress, strain and natural frequency for treadmill roller In order to analyses treadmill roller, many variables such as load condition, boundary condition, weight condition and resonance are considered. Natural frequency of treadmill is compare to motor revolution.

Orthotropic Theory for the Prediction of Mechanical Performance in Thermally Point-bonded Nonwovens

  • Kim, Han-Seong
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 2004
  • The orthotropic theory is applied for the nonwoven fabrics that have a preferred orientation direction, the case if the structure is not isotropic. The polynomial regression analysis is employed to allow the attainment of more statistically meaningful information. A functional form based on the transformation rule is developed for the orthotropic approach. The predictions thus obtained are seen to be in excellent agreements with experimental data and the resulting compliances exhibit meaningful relationships for the processing conditions. The compatibility of the compliances from tensile and shear analyses has been explored prior to a practical application of the four compliances defining the in-plane strain-stress field.

Finite Element Analysis of Metal Bonded Rubber Spring (금속-고무 스프링의 유한요소 해석)

  • 우창수;김완두
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.474-481
    • /
    • 1998
  • Metal bonded rubber spring is used in primary suspension component of the high speed train. The aim of this study is to establish a finite element analysis technique for the metal bonded rubber spring. Some theoretical analyses were performed on the hyperelastic behavior in rubber material and test are carried out to acquire the constants in strain energy function for it. Also, finite element analysis were executed to evaluate the design parameter and behavior of deformation and stress distribution using by the commercial finite element code.

  • PDF

A Study on Durability Test Method of Vehicle Suspension Systems (차량 현가장치의 내구성 시험에 관한 연구)

  • 백운경
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.24-31
    • /
    • 1995
  • This paper shows the fatigue durability test method for vehicle suspension systems. Durability should be assured for the safe driving during vehicle life cycle. A computer simulation for the vehicle dynamics was used to obtain dynamic loads that were required for the fatigue durability test. Durability tests were done for an Important load-carrying component of the suspension system. Stress analyses using stresscoat and strain gages were also done for the component. This study demonstrated an effective method for the fatigue durability test.

  • PDF