• Title/Summary/Keyword: stress/strain analyses

Search Result 366, Processing Time 0.021 seconds

Analyses of the Decrease Phenomenon of Fracture Resistance Curve Under Tension-Compression Loading (인장-압축하중 하의 파괴저항곡선의 감소현상 해석)

  • Yun, Byeong-Gon;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.378-385
    • /
    • 2000
  • Fracture resistance (J-R) curves, which are used for elastic-plastic fracture mechanics analyses, decreased under tension-compression loading condition. This phenomenon was proved by several former researches, but the causes have not been clear yet. The objective of this paper is to investigate the cause of this phenomenon. On the basis of fracture resistance curve test results, strain hardening hypothesis, stress redistribution hypothesis and crack opening hypothesis were built. In this study, hardness tests, Automated Ball Indentation(ABI) tests, theoretical stress field analyses, and crack opening analyses were performed to prove the hypotheses. From this study, strain-hardening of material, generation of tensile residual stress at crack tip, and crack opening effects are proved as the causes of the decrease hypothesis.

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain elasticity theory with porous core and functionally graded facesheets

  • Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the important novelty and the defining a physical phenomenon of the resent research is the development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials in the top and bottom face sheets.Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case.

Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions

  • Sun, De'an;Chen, Liwen;Zhang, Junran;Zhou, Annan
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.669-685
    • /
    • 2015
  • A three-dimensional elastoplastic constitutive model, also known as a UH model (Yao et al. 2009), was developed to describe the stress-strain relationship for normally consolidated and over-consolidated soils. In this paper, an acoustic tensor and discriminator of bifurcation for the UH model are derived for the strain localization of saturated clays under undrained and fully and partially drained conditions. Analytical analysis is performed to illustrate the points of bifurcation for the UH model with different three-dimensional stress paths. Numerical analyses of cubic specimens for the bifurcation of saturated clays under undrained and fully and partially drained conditions are conducted using ABAQUS with the UH model. Analytical and numerical analyses show the similar bifurcation behaviour of overconsolidated clays in three-dimensional stress states and various drainage conditions. The results of analytical and numerical analyses show that (1) the occurrence of bifurcation is dependent on the stress path and drainage condition; and (2) bifurcation can appear in either a strain-hardening or strain-softening regime.

Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite (열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중)

  • S. J. Yun;K. K. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

Local buckling of reinforcing steel bars in RC members under compression forces

  • Minafo, Giovanni
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.527-538
    • /
    • 2018
  • Buckling of longitudinal bars is a brittle failure mechanism, often recorded in reinforced concrete (RC) structures after an earthquake. Studies in the literature highlights that it often occurs when steel is in the post elastic range, by inducing a modification of the engineered stress-strain law of steel in compression. A proper evaluation of this effect is of fundamental importance for correctly evaluating capacity and ductility of structures. Significant errors can be obtained in terms of ultimate bending moment and curvature ductility of an RC section if these effects are not accounted, as well as incorrect evaluations are achieved by non-linear static analyses. This paper presents a numerical investigation aiming to evaluate the engineered stress-strain law of reinforcing steel in compression, including second order effects. Non-linear FE analyses are performed under the assumption of local buckling. A role of key parameters is evaluated, making difference between steel with strain hardening or with perfectly plastic behaviour. Comparisons with experimental data available in the literature confirm the accuracy of the achieved results and make it possible to formulate recommendations for design purposes. Finally, comparisons are made with analytical formulations available in the literature and based on obtained results, a modification of the stress-strain law model of Dhakal and Maekawa (2002) is proposed for fitting the numerical predictions.

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.349-358
    • /
    • 2023
  • Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.

Plastic Displacement Estimates in Creep Crack Growth Testing (크리프 균열 성장 실험을 위한 소성 변위 결정법)

  • Huh Nam-Su;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.