• Title/Summary/Keyword: strengths of materials

Search Result 945, Processing Time 0.027 seconds

Effects of Ultraviolet Surface Treatment on Adhesion Strength of Carbon/Epoxy Composite

  • Kim, Jong-Min;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.15-19
    • /
    • 2002
  • In this work, the surface modification of carbon/epoxy composites was investigated using UV (ultraviolet ray) surface treatment to increase adhesion strength between the carbon/epoxy composites and adhesives. After UV surface treatment, XPS (X-ray photoelectron spectroscopy) tests were performed to analyze the surface characteristics of the carbon/epoxy composites. Comparing adhesion strengths with the surface characteristics, the effects of the surface modification of carbon/epoxy composites by UV surface treatments on the adhesion strengths were investigated.

  • PDF

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

Evaluation of Mechanical Properties of Welded Joints by an Instrumented Indentation Test and Fatigue Life Evaluation (계장화 압입시험에 의한 용접부의 물성 측정 및 피로수명 예측)

  • Goo, Byeong-Choon;Lee, Dong-Hyung;Kwon, Dong-Il;Choi, Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • When material properties depend much on positions in a material or it is difficult to make test specimens from a material or component, an instrumented indentation test described in ISO 14577-1, 14577-2 or KS B 0950 can be used to measure material properties and damage. In this study, first of all, the principals of the instrumented indentation test, KS B 0950 are introduced and yield strengths, tensile strengths and work hardening exponents of base materials, heat affected zones and weld materials are measured. In addition, the influence of post-weld heat treatment on the material properties is investigated. Finally the fatigue lift of butt welded specimens are evaluated by the local strain approach. To calculate local strains and stresses, elasto-plastic finite element analysis is conducted using the measured properties.

Prediction of Shear Strength of Reinforced Concrete Members with High-Strength Materials using Truss Models (트러스 모델에 의한 고강도 재료가 사용된 철근콘크리트 부재의 전단강도 예측)

  • Kim Sang-Woo;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.367-370
    • /
    • 2005
  • This study is to propose a truss model which is able to reasonably predict the shear strength of reinforced concrete (RC) members with high-strength materials. The shear strengths of 107 RC test beams with high-strength steel bars reported in the technical literatures were compared to those obtained from proposed model, TATM, and existing truss models. The shear strength of reinforced concrete beams obtained from test was better predicted by TATM than other truss models. Also, the theoretical results by TATM were almost constant regardless of yield strengths and steel ratios of tension and shear reinforcements.

  • PDF

FRACTURE STRENGTHS OF CEROMER CROWNS SUPPORTED ON THE VARIOUS ABUTMENT CORE MATERIALS

  • Kim Young-Oh;Ku Chul-Whoi;Park Young-Jun;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.647-653
    • /
    • 2004
  • Statement of problem. The effects of various core buildup materials which differs in the mechanical properties on the fracture strength of metal-free crowns is unknown. Purpose. This study was carried out to evaluate the fracture strengths of Artglass ceromer crowns supported by 3 different core materials in clinically simulated anterior tooth preparation. Material and methods. Ten crowns from each group were constructed to comparable dimensions on the various dies made by gold alloy, Ni-Cr alloy, and composite resin. The ten crowns were then cemented onto the dies and loaded until catastrophic failure took place. Fracture resistance to forces applied to the incisal edges of the anterior crowns supported by three types of dies was tested. Results. The ceromer crowns on the composite resin dies fractured at significantly lower values(287.7 N) than the ceromer crowns on the metal dies(approximately 518.4 N). No significant difference was found between the fracture values of the ceromer crowns on the dies of gold alloy and Ni-Cr alloy. Conclusion. The failure loads of the ceromer crowns on the metal dies were almost the same and not affected by the differences of casting alloys. However, the fracture values of the ceromer crowns on the resin dies were significantly reduced by the relative weak properties of composite resin core material.

Microstructure and mechanical behavior of cementitious composites with multi-scale additives

  • Irshidat, Mohammad R.;Al-Nuaimi, Nasser;Rabie, Mohamed
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.163-171
    • /
    • 2021
  • This paper studies the effect of using multi-scale reinforcement additives on mechanical strengths, damage performance, microstructure, and water absorption of cementitious composites. Small dosages of carbon nanotubes (CNTs) or polypropylene (PP) microfibers; 0.05%, 0.1%, and 0.2% by weight of cement; were added either separately or simultaneously into cement mortar. The experimental results show the ability of these additives to enhance the mechanical behavior of the mortar. The best improvement in compressive and flexural strengths of cement mortar reaches 28% in the case of adding a combination of 0.1% CNTs and 0.2% PP fibers for compression, and a combination of 0.2% CNTs and 0.2% PP fibers for flexure. Adding CNTs does not change the brittle mode of failure of plain mortar whereas the presence of PP fibers changes it into ductile failure and clearly enhances the fracture energy of the specimens. Scanning electron microscopic (SEM) images of the fracture surfaces highlights the role of CNTs in improving the adhesion between the PP fibers and the hydration products and thus enhance the ability of the fibers to mitigate cracks propagation and to enhance the mechanical performance of the mortar.

A Study on Properties of SSBR/NdBR Rubber Composites Reinforced by Silica

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.202-206
    • /
    • 2018
  • Five solution styrene butadiene rubber/neodymium butadiene rubber (SSBR/NdBR) composites were manufactured using different ratios of SSBR and NdBR. In this study, the composites were reinforced with NdBR and silica to confirm the physical properties of SSBR used for treads of automobile tires and the dispersibility with silica. The morphologies of the rubber composites were observed using field-emission scanning electron microscopy (FE-SEM). The crosslinking behaviors of the composites were tested using a rubber process analyzer (RPA), and the abrasion resistances were tested using a National Bureau of Standards (NBS) abrasion tester. The hardness values, tensile strengths, and cold resistances of the composites were also tested according to ASTM standards. Increased NdBR content yielded composites with excellent crosslinking properties, abrasion resistances, hardnesses, tensile strengths, and cold resistances. The crosslinking point increased due to the double bond in NdBR, thereby increasing the degree of crosslinking in the composites. The NdBR-reinforced composites exhibited excellent abrasion resistances, which is explained as follows. In SSBR, a breakage is permanent because a resonance structure between styrene and SSBR forms when the molecular backbone is broken during the abrasion process. However, NdBR forms an additional crosslink due to the breakdown of the molecular backbone and high reactivity of the radicals produced. In addition, the low glass transition temperature (Tg) of NdBR provided the rubber composites with excellent cold resistances.

Improvement of Plating Characteristics Between Nickel and PEEK by Plasma Treatment and Chemical Etching

  • Lee, Hye W.;Lee, Jong K.;Park, Ki Y.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • Surface of PEEK(poly-ether-ether-ketone) was modified by chemical etching, plasma treatment and mechanical grinding to improve the plating adhesion. The plating characteristics of these samples were studied by the contact angle, plating thickness, gloss and adhesion. Chemical etching and plasma treatment increased wettability, adhesion and gloss. The contact angle of as-received PEEK was $61^{\circ}$. The contact angles of chemical etched, plasma treated or both were improved to the range of $15{\sim}33^{\circ}$. In the case of electroless plating, the thickest layer without blister was $1.6{\mu}m$. The adhesion strengths by chemical etching, plasma treatment or both chemical etching and plasma treatment were $75kgf/cm^2$, $102kgf/cm^2$, $113kgf/cm^2$, respectively, comparing to the $24kgf/cm^2$ of as-received. In the case of mechanically ground PEEKs, the adhesion strengths were higher than those unground, with the sacrifice of surface gloss. The gloss of untreated PEEK were greater than mechanically ground PEEKs. Plating thickness increased linearly with the plating times.