• 제목/요약/키워드: strengths of materials

검색결과 941건 처리시간 0.025초

송전선로 ACSR 케이블의 산화에 따른 결빙 특성 평가 (Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable)

  • 조희재;김유섭;정용찬;이수열
    • 한국재료학회지
    • /
    • 제29권6호
    • /
    • pp.378-384
    • /
    • 2019
  • Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.

Comparison of shear bond strengths of different types of denture teeth to different denture base resins

  • Prpic, Vladimir;Schauperl, Zdravko;Glavina, Domagoj;Catic, Amir;Cimic, Samir
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권6호
    • /
    • pp.376-382
    • /
    • 2020
  • PURPOSE. To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS. Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS. The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION. Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조 (In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures)

  • 하정수;한유정
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.129-135
    • /
    • 2019
  • A powder mixture of 70 wt% $Al_2O_3$ and 30 wt% hydroxyapatite (HA) is sintered at $1300^{\circ}C$ or $1350^{\circ}C$ for 2 h at normal pressure. An $MgF_2$-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without $MgF_2$ show ${\alpha}$ & ${\beta}$-tricalcium phosphates (TCPs) and $Al_2O_3$ phases with no HA at either of the sintering temperatures. In the case of $1,350^{\circ}C$, a $CaAl_4O_7$ phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and $1,350^{\circ}C$, respectively. Because the decomposition of HA produces a $H_2O$ vapor, fewer large pores of $5-6{\mu}m$ form at $1,300^{\circ}C$. The $MgF_2$-added samples show FA and $Al_2O_3$ phases with no TCP. Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and $1,350^{\circ}C$, respectively. No large pores are observed, and the grain size of FA ($1-2{\mu}m$) is bigger than that of TCP ($0.7{\mu}m{\geq}$) in the samples without $MgF_2$. The resulting $TCP/Al_2O_3$ and $FA/Al_2O_3$ composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.

배향된 휘스커 종자에 의해 제조된 질화규소 세라믹 복합체의 기계적 특성 (Mechanical Properties of Si3N4 Ceramic Composites with Aligned Whisker Seeds)

  • 김한길;방국수;정상진;박찬
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.8-12
    • /
    • 2013
  • Four kinds of silicon nitride composites with tri-laminate structure were prepared by stacking tapes with aligned ${\beta}-Si_3N_4$ whisker seeds. The composites were fabricated using a modified tape casting method for enhanced alignment of the whisker seeds. The relative densities of all four samples reached 99% at room temperature. The three-point flexural strengths of the samples according to the stacking sequences were measured at both room temperature and 1723 K. The high temperature strength of sample WWW was $457{\pm}14$ MPa. The fracture of sample WWW occurred mainly along the grain boundary. The room temperature strengths of samples OOO, OWO, WOW, and WWW were $430{\pm}32$ MPa, $470{\pm}19$ MPa, $700{\pm}14$MPa, and $940{\pm}14$ MPa, respectively.

Push-out bond strengths of fiber-reinforced composite posts with various resin cements according to the root level

  • Chang, Hoon-Sang;Noh, Young-Sin;Lee, Yoon;Min, Kyung-San;Bae, Ji-Myung
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.278-286
    • /
    • 2013
  • PURPOSE. The aim of this study was to determine whether the push-out bond strengths between the radicular dentin and fiber reinforced-composite (FRC) posts with various resin cements decreased or not, according to the coronal, middle or apical level of the root. MATERIALS AND METHODS. FRC posts were cemented with one of five resin cement groups (RelyX Unicem: Uni, Contax with activator & LuxaCore-Dual: LuA, Contax & LuxaCore-Dual: Lu, Panavia F 2.0: PA, Super-Bond C&B: SB) into extracted human mandibular premolars. The roots were sliced into discs at the coronal, middle and apical levels. Push-out bond strength tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min, and the failure aspect was analyzed. RESULTS. There were no significant differences (P>.05) in the bond strengths of the different resin cements at the coronal level, but there were significant differences in the bond strengths at the middle and apical levels (P<.05). Only the Uni and LuA cements did not show any significant decrease in their bond strengths at all the root levels (P>.05); all other groups had a significant decrease in bond strength at the middle or apical level (P<.05). The failure aspect was dominantly cohesive at the coronal level of all resin cements (P<.05), whereas it was dominantly adhesive at the apical level. CONCLUSION. All resin cement groups showed decreases in bond strengths at the middle or apical level except LuA and Uni.

Effects of Reactive Air Brazing Parameters on the Interfacial Microstructure and Shear Strength of GDC-LSM/Crofer 22 APU Joints

  • Raju, Kati;Kim, Seyoung;Seong, Young-Hoon;Yoon, Dang-Hyok
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.394-398
    • /
    • 2019
  • In this paper, the joining characteristics of GDC-LSM ceramics with Crofer 22 APU metal alloys was investigated at different brazing temperatures and holding times by reactive air brazing. Brazing was performed using Ag-10 wt% CuO filler, at three different temperatures (1000, 1050, and 1100℃ for 30 minutes) as well as for three different holding times (10, 30, and 60 minutes at 1050℃). The interfacial microstructures were examined by scanning electron microscopy and the joining strengths were assessed by measuring shear strengths at room temperature. The results show that with increasing brazing temperature and holding time, joint microstructure changed obviously and shear strength was decreased. Shear strength varied from a maximum of 100±6 MPa to a minimum of 18±5 MPa, depending on the brazing conditions. These changes were attributed to an increase in the thickness of the oxide layer at the filler/metal alloy interface.

응축형 복합레진의 파괴거동에 관한 연구 (FRACTURE BEHAVIOR OF CONDENSABLE COMPOSITE RESINS)

  • 김소영;최호영;최경규;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.446-458
    • /
    • 2000
  • In this study, compressive strengths of three condensable composite resins(ALERT, SureFil, Solitaire), conventional hybrid composite resin(Z-100) and amalgam(HI-Aristaloy 21) according to the 6 types of cavity design(cylinder, trapezoidal, butt-joint, round bevel, long bevel and short bevel) were measured and appearance of fracture surfaces were observed with SEM, thus evaluated clinical applications of condensable composite resins according to the cavity designs. The results were as follows; 1. Compressive strengths according to experimental materials were the highest in SureFil, and Z-100, ALERT, Solitaire, HI-Aristaloy 21 in order. 2. SureFil showed the highest compressive strength(p<0.05). compressive strengths of ALERT and Solitaire were lower than that of Z-100, hybrid composite(p<0.05). 3. Compressive strengths according to specimen design were the highest in trapezoidal shape(p<0.05) and no significant difference was detected between other specimen designs. 4. The appearance of condensable composite resin under SEM was of a diverse configuration according to component of resin matrix, shapes of filler and surface treatments between resin and filler.

  • PDF

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

의치수리(義齒修理)에 있어 파절접합부(破折接合部)의 조작형태(造作形態)가 의치(義齒)의 결합력(結合力)에 미치는 영향(影響)에 관(關)한 연구(硏究) (A STUDY REPAIRED JOINT STRENGTH OF COMPLETE DENTURE)

  • 이우현;허성주;조인호
    • 대한치과보철학회지
    • /
    • 제29권3호
    • /
    • pp.101-110
    • /
    • 1991
  • The purpose of this study was to compare the repaired joint strength among several edge profiles after denture repair. For this study, eight edge profiles were used for repair methods and five self-curing resin brands were used for repair materials. Break away loads were tested after 1 hr., 24 hrs. and 1 week. Instron was used for testing the transverse strength of repaired specimen. The results were as follows. 1. Repaired joint strength was about 35-65% of that of original specimen. 2. Joint strengths of round, inverse knife, inverse rabbit, lap ogee joint were higher tnan that of traditional simple butt joint 3. Joint strength of the simple butt joint was low significant. 4. Joint strengths after 1 hr. specimen were lower than those of 24 hrs. and 1 week specimens in joint strengths. 5. There were no significant differences between 24 hrs. and 1 week specimens in joint strengths. 6. It look more than 24 hours to gain satisfactory physical property after repairing the fractured denture base when self-curing resin was used for repair.

  • PDF