• Title/Summary/Keyword: strengthening length

Search Result 191, Processing Time 0.025 seconds

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Axially-compressed behavior of CFRP strengthening steel short columns having defects

  • Omid Yousefi;Amin Shabani Ammari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • In recent decades, the majority of studies have concentrated on the utilization of Steel Square Hollow Section (SHS) columns, with minimal attention given to reinforcing columns exhibiting inherent defects. This study addresses this gap by introducing initial vertical and horizontal defects at three distinct locations (top, middle, and bottom) and employing Carbon-FRP for reinforcement. The research investigates the dimensional and positional impacts of these defects on the axial behavior of SHS columns. A total of 29 samples, comprising 17 with defects, 11 strengthened, and 1 defect-free control, underwent examination. The study employed ABAQUS modeling and conducted experimental testing. Results revealed that defects located at different positions significantly diminished the load-bearing capacity and initial performance of the steel columns. Axial loading induced local buckling and lateral rupture, particularly at the defect side, in short columns. Notably, horizontal (across the column's width) and vertical (along the column's height) defects in the middle led to the most substantial reduction in strength and load-bearing capacity. The axial compressive failure increased with the length-to-width ratio of the defect. Moreover, the application of four carbon fiber layers to strengthen the steel columns resulted in increased Energy Dissipation and a delayed onset of local buckling in the face of axial ruptures.

A Study on Color Coordination of Fashion Design by Color Proportion (패션 디자인에서 색채 비례에 의한 배색 연구)

  • Moon, Young-Ae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 2009
  • The purpose of this study is to investigate harmonious color schemes based on a length proportion of upper and lower parts of a body by; understanding of the harmonious length proportion of a square measure of a color in color coordination of fashion design, and presenting a mutual relation of the length proportion of a square measure of a color according to the various way of color schemes and proportions. For this study, monochromatic scheme, analogous scheme and complementary scheme were adapted as the color schemes, and each color scheme was coordinated by analogous tone and contrast tone. Also, 1:1 symmetry proportion, 1:2 harmonic proportion, 1:1.618 golden section, 1:3 and 1:5 contrast proportion were used as the square measure of a color. For the survey, 12 sets of color sample were organized. The survey was conducted 182 of university students majored in fashion design, and 143 responded samples were analyzed using SPSS 12. The result of the study is as follows: 1:5 contrast proportion is most inharmonious in general, and 1:1 symmetry proportion is followed. It is thought that too much or same length of the square measure of colors has less attractive effect of coloring. On the other hand, 1:1.618 golden section and 1:2 harmonic proportion are accepted to be harmonious in all color schemes. The length proportion of the square measure of a color had more influence on harmony of color coordination in fashion design rather than color schemes. Though, on the assumption that people have a similar perception about the color image of fashion design, it will play an important role in strengthening or diminution of color in cloth if the coloring effect of the length proportion of the square measure of a color is used in fashion design and wearing of clothes.

  • PDF

Comparison of Supraspinatus Muscle Architecture During Three Different Shoulder Strengthening Exercises Using Ultrasonography

  • Moon, Il-young;Lim, One-bin;Cynn, Heon-seock;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.84-92
    • /
    • 2016
  • Background: Strengthening the supraspinatus is an important aspect of a rehabilitation program for subacromial impingement and tendinopathy. Many authors recommended empty-can (EC), full-can (FC), and prone full-can (PFC) exercises to strengthen the supraspinatus. However, no ultrasonography study has yet investigated supraspinatus muscle architecture (muscle thickness; MT, pennation angle; PA, fiber bundle length; FBL) in relation to supraspinatus strengthening exercises. Objects: The purpose of this study was to compare the architecture (MT, PA, and FBL) of the supraspinatus muscle during three different types of exercises (EC, FC, and PFC) using diagnostic ultrasound. Methods: Participants performed three different exercises: (A) EC; the arm was maintained at $60^{\circ}$ abduction with full internal rotation in the sitting position, (B) FC; the arm was maintained at $60^{\circ}$ abduction with full external rotation in the sitting position, and (C) PFC; the arm was maintained at $60^{\circ}$ abduction with full external rotation in the prone position. Ultrasonography was used to measure the MT, PA and FBL of the supraspinatus. One-way repeated analysis of variance with Bonferroni's post-hoc test was used to compare between the three exercises and the initial position of each exercise. Results: Compared with each initial position, the FC exercise showed the greatest mean difference in muscle architecture properties and the PFC exercise showed the least mean difference. Conclusion: The findings suggest that the FC exercise position may have an advantage in increasing the amount of contractile tissue or producing muscle power and the PFC exercise position may be useful in a rehabilitation program because it offers the advantage of maintaining the muscle architecture properties.

Static and Fatigue Behavior of RC Beams Strengthened with Steel Plates

  • Oh, Byung-Hwan;Cho, Jae-Yeol;Cha, Soo-Won
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2002
  • Strengthening of existing concrete structures is a major concern in recent years as the number of degraded structures increases. The purpose of this paper is to investigate the static and fatigue behavior of reinforced concrete (RC) beams strengthened with steel plates. To this end, a comprehensive test program has been set up and many series of strengthened beams have been tested. The major test variables include the plate thickness, adhesive thickness, and the shear-span to depth ratio. The test results indicate that the separation of plates is the dominant failure mechanism even for the full-span-length strengthened beams with steel plate. The theoretical ultimate load capacities for strengthened beams based on the full composite action of concrete beam and steel plate are found to be larger than the actual measured load capacities. The strengthened beams exhibit more dominant shear cracking as the shear-span to depth ratio decreases. The ultimate capacity of strengthened beams increases slightly with the increase of adhesive thickness, which may be caused by the late initiation of plate separation in the beams with thicker adhesive. A realistic concept of ductility for plate-strengthened beams is proposed in this study. It is seen that the strengthened beams show relatively low ductility compared with unstrengthened beams. The present study indicates that the strengthened beams exhibit much higher fatigue resistance than the unstrengthened beams. The increase of deflections of strengthened beams according to the number of load cycles is much smaller than that of unstrengthened beams. The present study provides very useful results for the realistic application of plate-strengthening method in reinforced concrete structures.

  • PDF

An Experimental Study on the Shear Behavior of Reinforced Concrete Beams Strengthened with Slit Type Steel Plates (Slit형(形) 강판으로 보강(補强)한 철근콘크리트 보의 전단거동에 관한 실험연구)

  • Lee, Choon-Ho;Shim, Jong-Seok;Kwon, Ki-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • RC beam of existing structures often encounter shear problems for various reasons. The shear failure of RC beam is sudden and brittle. Strengthening technique jacketing with external bonding of steel plates(or CFRP and CFS) with epoxy is many use to in practice. This study presents test results on strengthening shear deficient RC beams by external bonding of slit type steel plates. Test parameters are width, interval, length, thickness and angle of slit in steel plates. The purpose was to evaluate the reinforcing effects, failure modes and shear capacities for RC beams of strengthened with various slit type steel plates. The test result confirmed that all slit steel plates improved the stiffness and strength of the specimens significantly. Failure modes of SV series and SD series showed shear fractures and flexure fractures at ultimate state respectively. SD series were ductile rather than SV series.

Assessment of Flexural Strengthening Behavior Using the Stirrup-Cutting Near Surface Mounted(CNSM) CFRP strip (스터럽 절단 탄소섬유판 표면매립공법의 휨 보강 성능 평가)

  • Moon, Do Young;Oh, Hong Seob;Zi, Goang Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.102-112
    • /
    • 2012
  • Recently, the near surface mounted (NSM) FRP strengthening technique has been actively applied to deteriorated concrete structures for rehabilitation purposes. However, the use of this conventional NSM technique could be restricted due to the insufficient height or strength of the concrete cover. In this study, the stirrup-Cutting Near Surface Mounted(CNSM) technique was considered as an alternative, whereby NSM strips are placed at a deeper level, namely at the level of the main steel reinforcement. A flexural test of a concrete beam strengthened with CNSM technique was performed and the results were then compared to those for a concrete beam strengthened by the conventional NSM technique. The embedment length of the CFRP strips was varied in order to increase the effect of the anchoring depth of the NSM and CNSM CFRP strips in the beam specimens. From the results of the test, the beam with the CNSM CFRP strip showed typical structural behavior similar to that of the beam with the NSM CFRP strip. Moreover, there was no apparent structural degradation resulting from the stirrup partial-cutting. Consequently, the CNSM strengthening technique can be suitably utilized for extensively damaged concrete structures where it is difficult to apply the conventional NSM technique.

Effects of Elastic Band Resistance Exercise on Improving the Balance Ability in the Elderly (탄력밴드저항운동이 노인의 균형 능력 향상에 미치는 영향)

  • Kim, Geon;Kim, Su-Hyon;Seo, Sam-Ki;Yoon, Hui-Jong;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • Purpose: This study examines the effects of elastic band of resistance exercise for balance control of the elderly. Methods: Thirty of eighty participants in experiment subjects who demonstrated balance-impairment through the use of primary screening tests including the one leg standing test (OLST), functional reach test (FRT) and timed up and go (TUG) were selected as subjects. Fifteen subjects that underwent muscle-strengthening exercise using an elastic band were selected as the exercise group and fifteen subjects were selected as a control group. Subjects undertook a home-based exercise program three times per week for 9 weeks. Muscle strength, functional assessment and a balance test were quantitatively measured before and after the exercise regimen. Results: After muscle strengthening exercises, changes in maximal voluntary isometric contraction (MVIC) showed a significant increase in all of the lower extremity muscles of the exercise group subjects. There were statistically significant differences between the exercise and control groups for changes in the OLST, FRT and TUG, which are functional assessments of balance ability, and changes of the unit path length and circumference area, measurement items of quantitative analysis. In addition, from examining correlations between MVIC, balance ability, it was found that an increase of muscle strength in the hip joint group of muscles among the lower extremity muscles had greater improvement in correlation with balance ability in this elderly population. Conclusion: Resistance exercise using elastic bands had significant effects on muscle strengthening in elderly subjects, with a resultant increase of lower extremity muscle strength with significant improvement of balance ability.

  • PDF

Oxidation Behavior of Ti Added Alumina Dispersion Strengthening Copper Alloy (티타늄이 첨가된 알루미나 분산강화 동합금의 산화물 형성 거동)

  • Joh, Hongrae;Han, Seung Zeon;Ahn, Jee Hyuk;Lee, Jehyun;Son, Young Guk;Kim, Kwang Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.202-208
    • /
    • 2015
  • Alumina dispersion strengthening copper(ADSC) alloy has great potential for use in many industrial applications such as contact supports, frictional break parts, electrode materials for lead wires, and spot welding with relatively high strength and good conductivity. In this study, we investigated the oxidation behavior of ADSC alloys. These alloys were fabricated in forms of plate and round type samples by surface oxidation reaction using Cu-0.8Al, Cu-0.4Al-0.4Ti, and Cu-0.6Al-0.4Ti(wt%) alloys. The alloys were oxidized at $980^{\circ}C$ for 1 h, 2 h, and 4 h in ambient atmosphere. The microstructure was observed with an optical microscope(OM) and a scanning electron microscope(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS). Characterization of alumina was carried out using a 200 kV field-emission transmission electron microscope(TEM). As a result, various oxides including Ti were formed in the oxidation layer, in addition to ${\gamma}$-alumina. The thickness of the oxidation layer increased with Ti addition to the Cu-Al alloy and with the oxidation time. The corrected diffusion equation for the plate and round type samples showed different oxidation layer thickness under the same conditions. Diffusion length of the round type specimen had a value higher than that of its plate counterpart because the oxygen concentration per unit area of the round type specimen was higher than that of the plate type specimen at the same diffusion depth.

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.