• 제목/요약/키워드: strengthened beam

검색결과 407건 처리시간 0.024초

Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet

  • Park, Jai-woo;Yoo, Jung-han
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.441-465
    • /
    • 2015
  • This paper presents the experimental results of flexural and compression steel members strengthened with carbon fiber reinforced polymers (CFRP) sheets. In the flexural test, the five specimens were fabricated and the test parameters were the number of CFRP ply and the ratio of partial-length bonded CFRP sheets of specimen. The CFRP sheet strengthened steel beam had failure mode: CFRP sheet rupture at the mid span of steel beams. A maximum increase of 11.3% was achieved depending on the number of CFRP sheet ply and the length of CFRP sheet. In the compression test, the nine specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the length of the specimen. From the tests, for short columns it was observed that two sides would typically buckle outward and the other two sides would buckle inward. Also, for long columns, overall buckling was observed. A maximum increase of 57% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 60 transversely.

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force

  • Abderezak, Rabahi;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • 제11권2호
    • /
    • pp.91-109
    • /
    • 2022
  • This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.

Rehabilitation and strengthening of exterior RC beam-column connections using epoxy resin injection and FRP sheet wrapping: Experimental study

  • Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.723-736
    • /
    • 2019
  • The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.

Strengthening Effect Evaluation Technique of R/C Beams using the Vibration Test (진동시험을 통한 R/C Beam의 보강효과 검증기법)

  • 심종성;유태석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.255-260
    • /
    • 1994
  • This study suggests a strengthening effect evaluation technique of reinforced concrete beams using the vibration test. To evaluate the strengthening effect of R/C beams, Strengthening Factor(Sf) was suggested. Using the value of Sf, 20 beams were evaluated. According to these results the effects of R/C beams strengthened by steel plate is superior than those of R/C beams strengthened by carbon fiber sheet.

  • PDF

Improvement in Flexure Capacities of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates (프리스트레스를 가한 CFRP판으로 보강한 철근콘크리트 보의 휨성능 개선)

  • Kim, Hyeong-Su;Hong, Ki-Nam;Woo, Sang-Kyun;Song, Young-Cheol;Han, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.471-474
    • /
    • 2005
  • This thesis presents the results of a study on improvement in flexure capacities of reinforced concrete beams strengthened with prestressed CFRP plates. Test variables included the type of strengthening, steel ratio and prestressing level. The experimental results show that proposed methods can increase the flexure capacity such as strength, stiffness of the beam remarkably.

  • PDF

A Experimental Study on the Control of Premature Failure of RC Beams strengthened by Steel Plates (강판으로 보강된 RC보의 조기파괴제어에 관한 실헙적 연구)

  • 심종성;한만엽;김규선;이인범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.585-591
    • /
    • 1998
  • In the case of reinforced concrete beams strengthening by steel plate, sometimes these beams collapse due to the stress concentration at the ends of steel plates before the design expected failure. This kind of failure is called premature failure. This study analyzes the behavior of strengthened RC beams to control premature failure of these plated beams with either changing the geometries at the ends of plates or strengthening steel plates beside the ends. The results from the former cases show that, the effect of expanded plates sections at the ends was very small, and the beams which are rounded the ends of plates effectively increased the initial rip-off loads about 14% compared with control beam but the ultimate loads was almost same. However, the beams in the latter cases effectively increased the initial and the ultimate rip-off loads with changing failure mode, especially around 14~19% in the ultimate rip-off load comparing with control beam.

  • PDF

The Study on Improvement of Flexural Performance of RC Beam Strengthened with CFRP Plate (탄소섬유보강판으로 보강된 철근콘크리트 보의 휨성능 개선에 관한 연구)

  • 한상훈;최만용;조홍동;박중열;황선일;김경식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.399-404
    • /
    • 2002
  • This paper presents the results cf research on improved flexural performance cf reinforced concrete beams strengthened with bonded carbon fiber reinforced polymer plate. Recently, strengthening technique with CFRP plate were almost carried out by external bonding. But current external bonding technique cf CFRP plates may result in debonding CFRP plate. Therefore, this study proposes a strengthening method that prevents or delays debonding between CFRP plates and concrete and at the same time improves the strength. For this test, there were only 14 test beams manufactured and failure load, deflection, strains and modes cf failure have been examined Test variables included the type cf strengthening, steel ratio and strengthening length, and the effects according to each test variables were analyzed. The experimental results show that the strength and stiffness cf the beam significantly increased between 34.55 and 116.51% and the increase cf the more lead-carrying capacity than the control beams.

  • PDF

Effect of Shear Key and U strip on Flexural Behavior of Reinforced Concrete Beams Strengthened by CFS(Carbon Fiber Sheet) (탄소섬유쉬트로 보강된 철근콘크리트 보의 휨거동에 전단키와 U 스터립이 미치는 영향)

  • Choi, Hong-Shik;Lee, Chin-Yong;Yi, Seong-Tae;Lee, Si-Woo;Heo, Gweon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.88-91
    • /
    • 2004
  • It is generally known that the bonding strength of RC(Reinforced Concrete) flexural members strengthened by fiber sheet composites are sufficient and the bonding failure does not occur until the sheet failed. However, many researchers have been reported that, before the failure of the sheet, the bonding failure happens even though the bonding length is sufficient. This study was carried out to evaluate the effectiveness of shear key and U strip on flexural behavior of reinforced concrete beam structures. The ply number of CFS(Carbon Fiber Sheet), location of shear key, and existence or not of U strip were selected as the main test variables. Test results show that the behavior of a beam of which shear key is located in the nearby. of support and U strip is not existent, and having CFS of 1 ply is mostly improved.

  • PDF

CFS Strengthening Effect of Reinforced Concrete Beams under Loading States (재하상태에 따른 철근콘크리트 보의 탄소섬유쉬트 보강효과)

  • 김민수;오용복;권영웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.757-762
    • /
    • 2000
  • The target of this study is to compare and analyze the strengthening effect of damaged reinforced concrete beams under unloading and loading conditions through the simulation of strengthening condition in real structures. The conclusion of test results are as follows : For the concrete beam wrapped at the side in addition to be strengthened at the bottom, the strength and stiffness increase. although the flexural capacity depends on the strengthening method, it generally shows that the strength improve in the range of 22% to 39% in comparison with the specimen without strengthening. In case of applying th equation suggested by CangaRao & Vijay for the wraped concrete beam, it must be modified because it is likely to overestimate the flexural capacity considering the height of wrapping as the width of concrete. The strength an stiffness of reinforced concrete beams in proportion to the percentage of damage decrease. Damaged beams, which are strengthened by CFS, is structurally efficient and show reduction of strength comparing with the specimen without strengthening but stiffness is increasing.

  • PDF

Structural Performance of Reinforcement corrosion RC Beams Strengthened with Epoxy Mortar System (에폭시모르타르로 보강된 부식철근 RC보의 구조적 성능)

  • Han, Bok-Kyu;Hong, Geon-Ho;Shin, Yeong-Soo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of this study was to investigate the structural performance of reinforcement corrosion reinforced concrete beams strengthened with epoxy mortar system. Main test parameters are existence and the magnitude of the reinforcement corrosion and the reinforcing bar and the tensile reinforcement ratio of the specimens. eight beam specimens were tested to investigate the effectiveness of each test variables on maximum load capacity and failure mode. Test results showed that the ultimate moment of th specimens were higher tan the nominal moment and the flexural stiffness was increased about 2.5 times and the cracking moments occurred over 60% of the failure moment in comparison with same sized control beam. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF