• Title/Summary/Keyword: strength variation

Search Result 1,634, Processing Time 0.023 seconds

Reliability based partial safety factor of concrete containing nano silica and silica fume

  • Nanda, Anil Kumar;Bansal, Prem Pal;Kumar, Maneek
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.385-395
    • /
    • 2020
  • The influence of combination of nano silica and silica fume, as partial cement replacement materials, on the properties of concrete has been studied through the measurement of compressive strength. The compressive strength of concrete in terms of mean, standard deviation and with-in-test coefficient of variation related to the variation in the nominated parameters have also been developed. The compressive strength data developed experimentally has been analyzed using normal-probability distribution and partial safety factors of composite concretes have been evaluated by using first order second moment approach with Hasofer Lind's method. The use of Nano silica and silica fume in concrete decreases the partial safety factor of concrete i.e., increase the reliability of concrete. The experimental results show that the properties of concrete having nano silica and silica fume in combination were better than that of a plain concrete. The SEM test results showing the level of Ca(OH)2 in plain concrete and consumption level Ca(OH)2 of concrete containing nano silica & silica fume have also been presented.

Reliability analysis of soil slope reinforced by micro-pile considering spatial variability of soil strength parameters

  • Yuke Wang;Haiwei Shang;Yukuai Wan;Xiang Yu
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.631-640
    • /
    • 2024
  • In the traditional slope stability analysis, ignoring the spatial variability of slope soil will lead to inaccurate analysis. In this paper, the K-L series expansion method is adopted to simulate random field of soil strength parameters. Based on Random Limit Equilibrium Method (RLEM), the influence of variation coefficient and fluctuation range on reliability of soil slope supported by micro-pile is investigated. The results show that the fluctuation ranges and the variation coefficients significantly influence the failure probability of soil slope supported by micro-pile. With the increase of fluctuation range of soil strength parameters, the mean safety factor of the slope increases slightly. The failure probability of the soil slope increases with the increase of fluctuation range when the mean safety factor of the slope is greater than 1. The failure probability of the slope increases by nearly 8.5% when the fluctuation range is increased from δv=2 m to δv =8 m. With the increase of the variation coefficient of soil strength parameters, the mean safety factor of the slope decreases slightly, and the probability of failure of soil slope increases accordingly. The failure probability of the slope increases by nearly 31% when the variation coefficient increases from COVc=0.2, COVφ=0.05 to COVc=0.5, COVφ=0.2.

Experimental Study on Variation of Shear Strength of Reinforced Concrete Beams According to Design Parameters (설계변수에 따른 철근콘크리트 보의 전단강도 변화에 대한 실험연구)

  • Oh, Dong-Hyun;Choi, Kyung-Kyu;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.279-282
    • /
    • 2005
  • Experimental study is performed to investigate the variation of shear strength of reinforced concrete beams according to design parameters. The major parameters are loading condition, shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, prestress and boundary rigidity.14 reinforced concrete beams without web reinforcement are tested under monotonic downward loading. The shear strength of the tested specimens were compared with the prediction by design code and Choi's method.

  • PDF

A Study on the Quality of Concrete Place under Raining Condition (우기중에 타설된 콘크리트의 품질 특성에 관한 연구)

  • 권영웅;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.729-736
    • /
    • 1997
  • This paper gives the information of field concrete placed under raining condition. Experimental factors in this study are concrete strength, standard deviation and coefficient of variation. The results are as follows: 1. The strength of field concrete placed under raining condition is not largely dependent on the raining condition. 2. But, the quality of concrete is very critical.

  • PDF

The Effect of Variation of Design Parameters on the Flexural Behavior of UHPFRC Beams (UHPFRC 보 휨 거동에 대한 설계변수 변동의 영향)

  • Yang, In-Hwan;Kim, Kyung-Chul;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2018
  • This paper studies the bending behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams focused on the effect of variation in major material design parameters such as tensile strength, elastic modulus of UHPFRC, and rebar ratio. Analytical results show that the variation in the range of ${\pm}20%$ in the tensile strength of UHPFRC causes the significant difference in ${\pm}8{\sim}9%$ of bending strength compared to the reference condition. The variation of elastic modulus in UHPFRC rarely causes the effect on the bending strength of the UHPFRC section, whereas causes the difference in the slopes of moment-curvature curves, indicating different bending stiffness of UHPFRC sections. For the rebar with yield strength of 400MPa, the bending strength of SC120f is increased by 30, 67, and 99% when the rebar ratio is 1.0, 1.5, and 20%, respectively, compared to the rebar ratio of 0.5%. Therefore, it is observed that the variation of rebar ratio significantly affects the difference in bending strength of UHPFRC beams. However, as the compressive strength of UHPFRC becomes greater, the effect of rebar ratio on the increase of bending strength is decreased.

Variation of Welded-Joint Tensile Strength of GMA Welded Accelerated-Cooled Steel (가속냉각강 GMAW 용접이음부의 강도 변화)

  • 방국숙;정성욱
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.83-88
    • /
    • 2000
  • Variation of welded-joint hardness and tensile strength of a accelerated-cooled fine-grained ferritic-pearlitic steel with heat input was investigated. In a weld heat-affected zone, a softened zone was formed and it had lower hardness than that of a base metal. While the width of a softened zone increased continuously with an increase of heat input up to 100kJ/cm. the minimum hardness in a softned zone was almost constant after a continuos decrease up to 60KJ/cm. Because of a softened zone, the welded-joint was fractured in the HAZ and its maximum reduction of tensile strength was about 20%. Measured welded-joint tensile strength and calculated minimum tensile strength in a welded-joint was almost same, which means that the plastic restraint of a softened zone did not occur in this experiment. It is believed that as a softened zone width-to-specimen thickness ratio is as high as 2~6 in this experiment, the plastic restraint effect does not occur. Theoretical analysis shows that the plastic restraint effect occurs only when the ratio is below 0.5.

  • PDF

Strength variation of cemented sand due to wetting (수침이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Ki-Young;Kim, Chang-Woo;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.511-518
    • /
    • 2009
  • In this study, by the consideration of in situ curing conditions, cemented sand with cement ratio less than 20% is prepared by air dry condition and then wetted. A series of unconfined compression tests are carried out to evaluate the effect of wetting on the strength of cemented soils. Strength of air dry cured specimen drops to maximum 30% after wetting at the end of curing period when cement ratio is low. However, regardless of cement ratio, strength of repetitively wetted specimens during curing increases as the number of wetting increases. The results of this study can predict the strength variation of cemented sand depending on wetting conditions in the field, which can guarantee the safety of geotechnical structures such as dam.

  • PDF

Hadley Circulation Strength Change in Response to Global Warming: Statistics of Good Models

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.665-672
    • /
    • 2016
  • In this study, we examine future changes in the Hadley cell (HC) strength using CMIP5 climate change simulations. The current study is an extension of a previous study by Seo et al. that used all 30 available models. Here, we select 18-23 well-performing models based on their significant internal sensitivity of the interannual HC strength variation to the latitudinal temperature gradient variation. The model projections along with simple scaling analysis show that the inter-model variability in the HC strength change is a result of the inter-model spread in the meridional temperature gradient across the subtropics for both DJF and JJA, not by the tropopause height or gross static stability change. The HC strength is expected to weaken significantly during DJF, while little change is expected in the JJA HC strength. Compared to the calculations with all model members, selected model statistics increase the linear correlation between the changes in HC strength and meridional temperature gradient by 13~23%, confirming the robust sensitivity of the HC strength to the meridional temperature gradient. Two scaling equations for the selected models predict changes in HC strength better than all-member predictions. In particular, the prediction improvement in DJF is as high as 30%. The simple scaling relations successfully predict both the ensemble-mean changes and model-to-model variations in the HC strength for both seasons.

Comparisons of Test-Retest Reliability of Strength Measurement of Gluteus Medius Strength between Break and Make Test in Subjects with Pelvic Drop

  • Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.3
    • /
    • pp.147-150
    • /
    • 2019
  • Purpose: The purpose of this study was to compare the reliability of unilateral hip abductor strength assessment in side-lying with break and make test in subjects with pelvic drop. Hip abduction muscles are very important in the hip joint structures. Therefore, it is essential to evaluate their strength in a reliable way. Methods: Twenty-five subjects participated in this study. Unilateral isometric hip abductor muscle strength was measured in side-lying, with use of a specialized tensiometer using smart KEMA system for make test, of a hand held dynamometer for break test. Coefficients of variation, and intra class correlation coefficients were calculated to determine test-retest reliability of hip abductor strength. Results: In make test, maximal hip abductor strength in the side-lying position was significantly higher compared with break test (p<0.05). Additionally, Test-retest reliability of hip abductor strength measurements in terms of coefficients of variation (3.7% for make test, 16.1% for break test) was better in the side-lying position with make test. All intraclass correlation coefficients with break test were lower than make test (0.90 for make test, 0.73 for break test). Conclusion: The side-lying body position with make test offers more reliable assessment of unilateral hip abductor strength than the same position with break test. Make test in side-lying can be recommended for reliable measurement of hip abductor strength in subjects with pelvic drop.

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.