• 제목/요약/키워드: strength reinforcement

검색결과 2,576건 처리시간 0.028초

고장력 철근을 사용한 RC 보의 휨연성 평가 (Assessment of Flexural Ductility in RC Beams with High-Strength Reinforcement)

  • 권순범;윤영수;이만섭;임철현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.897-902
    • /
    • 2001
  • Recently, structure performance is maximized by using high strength concrete. In design of structure, concrete need combination with reinforcement, but use of common strength reinforcement make member complex bar placement, so high strength concrete members require increased strength reinforcement. If common strength reinforcement replaced by equal tension area of high strength reinforcement, reinforcement ratio increase and brittle failure of member may occur by material change. So, adequate upper limit of strength ratio is required to affirm ductile behavior in application of high strength reinforcement. In this study, ductility behavior was analysed by factor of reinforcement ratio, strength of concrete and reinforcement. The result indicate that ductile failure is shown under 0.35 $\rho_{b}$ in any reinforcement strength of same section and high strength concrete of 800kg/$cm^{2}$ used commonly is compatible with reinforcement of 5500kg/$cm^{2}$.

  • PDF

Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure

  • Wang, Peng;Shi, Qing X.;Wang, Qiu W.;Tao, Yi
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1233-1250
    • /
    • 2015
  • The behavior of reinforced concrete (RC) columns made from high strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength transverse reinforcing bars and three with normal-strength transverse reinforcement, were tested under double curvature bending load. The effects of yielding strength and ratio of transverse reinforcement on the cracking patterns, hysteretic response, shear strength, ductility, strength reduction, energy dissipation and strain of reinforcement were studied. The test results indicated that all specimens failed in splitting failure, and specimens with high-strength transverse reinforcement exhibited better seismic performance than those with normal-strength transverse reinforcement. It also demonstrated that the strength of high-strength lateral reinforcing bars was fully utilized at the ultimate displacements. Shear strength formula of short concrete columns, which experienced a splitting failure, was proposed based on the Chinese concrete code. To enhance the applicability of the model, it was corroborated with 47 short concrete columns selected from the literature available. The results indicated that, the proposed method can give better predictions of shear strength for short columns that experienced a splitting failure than other shear strength models of ACI 318 and Chinese concrete codes.

철근콘크리트 보에 사용된 전단보강철근의 항복강도 제한에 대한 평가 (Evaluation on the Maximum Yield Strength of Steel Stirrups in Reinforced Concrete Beams)

  • 이진은;이정윤
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.685-693
    • /
    • 2012
  • 현재 콘크리트설계기준에서는 전단보강철근의 항복강도를 제한하고 있다. 이 연구에서는 ACI318-08, EC2-02, CSA-04에서 제시하고 있는 전단설계기준을 이용한 계산값과 예제 실험체 데이터 값의 비교 분석을 통하여 각 기준의 전단보강철근 항복강도 제한의 상향조정에 대하여 판단해 보았다. 실험값과 계산값의 비교는 전단보강철근의 항복 강도를 제한하지 않았을 경우와 항복강도를 제한하였을 경우, 항복강도 및 철근비를 제한하였을 경우 세 가지로 나누어 분석하였다. 분석 결과는 전단보강철근의 항복강도를 제한하지 않았을 경우가 가장 실험값을 잘 예측하는 것으로 나타났다. 또한 항복강도를 기준으로 비교했을 때, 기준에서 제한하고 있는 항복강도 이상의 고강도에서도 실험값에 가까운 값을 예측함을 확인하였다. 따라서 기존의 전단설계수식에 고강도 전단보강철근의 강도를 적용하더라도 수식이 성립한다고 볼 수 있으며 기준상에서 제한하고 있는 항복강도를 상향조정하여도 적용상의 불리함이 없을 것으로 판단된다.

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

Predicting bond strength of corroded reinforcement by deep learning

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.145-159
    • /
    • 2022
  • In this study, the extreme learning machine and deep learning models were devised to estimate the bond strength of corroded reinforcement in concrete. The six inputs and one output were used in this study. The compressive strength, concrete cover, bond length, steel type, diameter of steel bar, and corrosion level were selected as the input variables. The results of bond strength were used as the output variable. Moreover, the Analysis of variance (Anova) was used to find the effect of input variables on the bond strength of corroded reinforcement in concrete. The prediction results were compared to the experimental results and each other. The extreme learning machine and the deep learning models estimated the bond strength by 99.81% and 99.99% accuracy, respectively. This study found that the deep learning model can be estimated the bond strength of corroded reinforcement with higher accuracy than the extreme learning machine model. The Anova results found that the corrosion level was found to be the input variable that most affects the bond strength of corroded reinforcement in concrete.

축력과 반복횡력을 받는 고강도 R/C 기둥의 횡보강근 효과에 관한 실험적 연구 (An Experimental Study on the Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and Axial Forces)

  • 한범석;이지영;안종문;이광수;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.493-498
    • /
    • 1998
  • An experimental investigation was conducted to examine the behavior of high-strength concrete R/C columns subjected to moment, shear and axial load. The test parameters of specimens were the compressive strength of concrete(f'c=250, 516, 600kg/ ㎠), space of lateral reinforcement (20, 30, 37cm) and lateral reinforcement ratio(ρs=2.1, 3.15%). Test results indicated that compressive strength of concrete and lateral reinforcement can significantly affect and alter the behavior of column under inelastic cyclic loadings. Despite of the defaults of high-strength concrete, with increased amount of lateral reinforcement ratio to core concrete and added sub-lateral reinforcement, ductility and strength of RC columns used high-strength concrete can secured.

  • PDF

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드 (Failure Modes of RC Beams with High Strength Reinforcement)

  • 윤석광;이수찬;이도형;이정윤
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.143-150
    • /
    • 2014
  • 콘크리트의 압축파괴에 의한 취성적인 비틀림파괴와 사인장균열의 폭을 제한하기 위하여 콘크리트구조기준은 비틀림보강철근의 항복강도를 제한하고 있다. 2012년에 콘크리트구조기준에서는 비틀림보강철근의 항복강도를 400 MPa에서 500 MPa로 상향하였다. 그 이유는 500 MPa의 비틀림보강철근을 사용한 비틀림부재의 경우에도 전단파괴하는 부재와 유사하게 기준에서 요구하는 비틀림파괴모드, 사용성, 경제성을 만족시킬 수 있을 것으로 판단하였기 때문이다. 그러나 현재 고강도 비틀림보강철근을 사용한 비틀림부재에 대한 연구는 전단부재에 대한 연구에 비하여 부족한 실정이다. 이 연구에서는 340 MPa, 480 MPa, 667 MPa의 비틀림보강철근을 사용한 철근콘크리트 보의 비틀림거동을 실험적으로 평가하였다. 실험에 의하면 비틀림보강철근의 파괴모드는 비틀림보강철근의 항복강도와 콘크리트의 압축강도에 의하여 영향을 받았다. 비틀림보강철근의 항복강도가 400 MPa이하인 경우에는 콘크리트의 압축강도와 무관하게 한 곳 이상에서 비틀림보강철근이 항복강도에 도달하여 비틀림인장파괴하였지만, 항복강도가 480 MPa 이상인 경우에는 비틀림보강철근이 항복하지 않는 경우가 발생하여 이에 대한 추가적인 연구가 필요할 것으로 판단된다.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.