• 제목/요약/키워드: strength reduction technology

검색결과 785건 처리시간 0.027초

Ultimate strength of stiffened plates with pitting corrosion

  • Rahbar-Ranji, Ahmad;Niamir, Nabi;Zarookian, Arvin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.509-525
    • /
    • 2015
  • Predicting residual strength of corroded plates is of crucial importance for service life estimation of aged structures. A series of nonlinear finite element method is employed for ultimate strength analysis of stiffened plates with pitting corrosion. Influential parameters, including plate thickness, type and size of stiffeners, pit depth and degree of pitting are varied and more than 208 finite element models are analyzed. It is found that ultimate strength is reduced by increasing pit depth to thickness ratio. Thin and intermediate plates have minimum and maximum reduction of ultimate strength with stronger stiffeners, respectively. In weak stiffener, reduction of ultimate strength in thin and intermediate plates depends on DOP. Reduction of ultimate strength in thick plates depends on thickness of plate and DOP. For intermediate plates, reduction for all stiffeners regardless of shape and size are the same.

Strength reduction factor for multistory building-soil systems

  • Nik, Farhad Abedi;Khoshnoudian, Faramarz
    • Earthquakes and Structures
    • /
    • 제6권3호
    • /
    • pp.301-316
    • /
    • 2014
  • This paper is devoted to investigate the effects of SSI on strength reduction factor of multistory buildings. A new formula is proposed to estimate strength reduction factors for MDOF structure-soil systems. It is concluded that SSI reduces the strength reduction factor of MDOF systems. The amount of this reduction is relevant to the fundamental period of structure, soil flexibility, aspect ratio and ductility of structure, and could be significantly different from corresponding fixed-base value. Using this formula, measuring the amount of this error could be done with acceptable accuracy. For some practical cases, the error attains up to 50%.

Seismic behaviour of concrete columns with high-strength stirrups

  • Wang, Peng;Shi, Qingxuan;Wang, Feng;Wang, Qiuwei
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.15-25
    • /
    • 2020
  • The seismic behaviour of reinforced concrete (RC) columns made from high-strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength stirrups (HSSs) and three with normal-strength stirrups (NSSs), were tested under a combination of high axial and reversed cyclic loads. The effects of stirrup strength and the ratio of transverse reinforcement on the cracking patterns, hysteretic response, strength, stiffness, ductility, energy dissipation and strain of transverse reinforcement were studied. The results indicate that good seismic behaviour of an RC column subjected to high axial compression can be obtained by using a well-shaped stirrup. Stirrup strength had little effect on the lateral bearing capacity. However, the ductility was significantly modified by improving the stirrup strength. When loaded with a large lateral displacement, the strength reduction of NSS specimens was more severe than that of those with HSSs, and increasing the stirrup strength had little effect on the stiffness reduction. The ductility and energy dissipation of specimens with HSSs were superior to those with NSSs. When the ultimate displacement was reached, the core concrete could be effectively restrained by HSSs.

Sensitivity analysis of flexural strength of RC beams influenced by reinforcement corrosion

  • Hosseini, Seyed A.;Shabakhty, Naser;Khankahdani, Fardin Azhdary
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.479-489
    • /
    • 2019
  • The corrosion of reinforcement leads to a gradual decay of structural strength and durability. Several models for crack occurrence prediction and crack width propagation are investigated in this paper. Analytical and experimental models were used to predict the bond strength in the period of corrosion propagation. The manner of flexural strength loss is calculated by application of these models for different scenarios. As a new approach, the variation of the concrete beam neutral axis height has been evaluated, which shows a reduction in the neutral axis height for the scenarios without loss of bond. Alternatively, an increase of the neutral axis height was observed for the scenarios including bond and concrete section loss. The statistical properties of the parameters influencing the strength have been deliberated associated with obtaining the time-dependent bending strength during corrosion propagation, using Monte Carlo (MC) random sampling method. Results showed that the ultimate strain in concrete decreases significantly as a consequence of the bond strength reduction during the corrosion process, when the section reaches to its final limit. Therefore, such sections are likely to show brittle behavior.

Estimation of response reduction factor of RC frame staging in elevated water tanks using nonlinear static procedure

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, Omprakash R.
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.209-224
    • /
    • 2017
  • Elevated water tanks are considered as important structures due to its post-earthquake requirements. Elevated water tank on reinforced concrete frame staging is widely used in India. Different response reduction factors depending on ductility of frame members are used in seismic design of frame staging. The study on appropriateness of response reduction factor for reinforced concrete tank staging is sparse in literature. In the present paper a systematic study on estimation of key components of response reduction factors is presented. By considering the various combinations of tank capacity, height of staging, seismic design level and design response reduction factors, forty-eight analytical models are developed and designed using relevant Indian codes. The minimum specified design cross section of column as per Indian code is found to be sufficient to accommodate the design steel. The strength factor and ductility factor are estimated using results of nonlinear static pushover analysis. It was observed that for seismic design category 'high' the strength factor has lesser contribution than ductility factor, whereas, opposite trend is observed for seismic design category 'low'. Further, the effects of staging height and tank capacity on strength and ductility factors for two different seismic design categories are studied. For both seismic design categories, the response reduction factors obtained from the nonlinear static analysis is higher than the code specified response reduction factors. The minimum dimension restriction of column is observed as key parameter in achieving the desired performance of the elevated water tank on frame staging.

Effect of Multi-Layer Carbon Fiber Sheet Used for Strengthening Reinforced Concrete Beams

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • 콘크리트학회논문집
    • /
    • 제17권1호
    • /
    • pp.149-155
    • /
    • 2005
  • The purpose of this study is to investigate the flexural strengthening effects of CF(Carbon Fiber) sheet for the full-scale RC beams with multi-layer CF sheets. The partial strength reduction factors of CF sheets are suggested from the full-scale RC beams tests strengthened with multi-layer CF sheets up to six layers as well as material tests. From the material tensile tests, it was observed that the average tensile strengths of CF sheets per layer are decreased as the number of CF sheets is increased. Also the steep strength reductions of CF sheets in material test results at rupture are observed compared with the structural tests results for the full-scale RC beams strengthened with multi-layer CF sheets. Finally, the partial strength reduction factors far CF sheets up to six layers are suggested considering the effects of multi-layer and unit weight of CF sheets.

용체화처리 및 시효처리가 17-4 석출경화형 스테인레스강 정밀주조품의 미세조직 및 기계적 성질에 미치는 영향 (Effect of the Solution Treatment & Aging Treatment on the Microstructure & Mechanical Property of 17-4 PH Stainless Steel)

  • 유성곤;이경환;나태엽
    • 한국주조공학회지
    • /
    • 제12권5호
    • /
    • pp.397-402
    • /
    • 1992
  • The effect of the solution & aging treatment on the tensile strength, yield strength, elongation, reduction of area, hardness was studied in the 17-4 PH stainless steel. SEM pictures were also taken in order to examine the fracture surfaces and precipitated particles. X-ray diffraction patterns for the heat treated samples were also observed. Mechanical properties of the heat treated samples were superior to those of as cast samples. Tensile strength, yield strength, hardeness decreased with the increase of aging temperature. On the other hand, elongation and reduction of area increased as the aging temperature increased.

  • PDF

Effects of Ionic Strength, Background Electrolytes, Heavy Metals, and Redox-Active Species on the Reduction of Hexavalent Chromium by Ecklonia Biomass

  • PARK DONGHEE;YUN YEOUNG-SANG;JO JI HYE;PARK JONG MOON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.780-786
    • /
    • 2005
  • The biomass of the brown seaweed, Ecklonia, was used to remove Cr(VI) from wastewater. Previously, Cr(VI) was removed through its reduction to Cr(III) when brought into contact with the biomass. In this study, the effects of ionic strength, background electrolytes, and Cr(III), Ni(II), Zn(II), and Fe(III) on the Cr(VI) reduction were examined. An increased ionic strength inhibited the Cr(VI) reduction. The presence of other heavy metals, such as Cr(III), Ni(II), or Zn(II), only slightly affected the Cr(VI) reduction, while Fe(III) enhanced the reduction. Although the above various parameters could affect the reduction rate of Cr(VI) by Ecklonia biomass, these effects were relatively smaller than those of pH and temperature. In addition, the previously derived rate equation was found to be applicable over a range of ionic strengths and with different background electrolytes. In conclusion, Ecklonia, bioniass may be a good candidate as a biosorbent for the removal of Cr(VI) from wastewaters containing various other impurities, and scale-up to a practical process may be accomplished using the previously derived rate equation.

통기성 상자 구조물의 강도적 최적화 연구(I)-실증 분석 (Strength Optimization of Ventilating Container(I)-Experimental Analysis)

  • 박종민
    • 한국포장학회지
    • /
    • 제7권2호
    • /
    • pp.19-24
    • /
    • 2001
  • 현재 국내에는 통기성 상자의 설계에 관한 기준이 마련되어 있지않아, 통기공으로 인한 상자 압축강도 저하와 통기성 면에서도 좋지 않은 형편이다. 선진 외국과는 물류 및 포장환경이 다르고, 방법에 있어서도 큰 차이가 있기 때문에 외국의 사례를 국내의 포장설계에 적용하는 데는 한계가 있다. 따라서 본 연구는 현재 국내에서 유통되는 통기성 상자에 대한 실태분석과 온 습도 변화에 따른 압축강도 저하와 통기성을 분석하므로써, 통기성 상자의 최적설계를 위한 설계 기준을 마련하고자 수행되었다. 현행 유통되는 통기성 상자의 통기공의 면적 비율은 $1.41{\sim}2.65%$ 였으며, 통기공의 형태, 크기 및 위치가 매우 다양하여, 이로 인한 상자 압축강도 저하율은 $8.5{\sim}20.2%$의 범위에 있었다. 대체로 통기공의 면적비율 보다는 통기공의 형태와 위치가 상자의 압축강도 저하에 미치는 더 중요한 요인으로 분석되었다. 통기공의 면적비율이 클 수록 온도와 상대습도의 평형도달시간은 짧았으며, 온도가 상대습도에 비하여 더 빨리 형평상태에 도달하였으며, 또한 통기공의 면적 비율이 같은 경우, 통기공의 형태에 따른 온도 및 상대습도의 평형도달 시간과 평형도달 온 습도에 있어서는 큰 차이가 없었다.

  • PDF

0.19C - 1.17Cr 강의 냉간인발조직과 기계적 성질 (The Microstructure and Mechanical Property of 0.19C-1.17Cr Steel with Cold Drawing)

  • 신정호;장병록
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.85-90
    • /
    • 2001
  • The microstructure and mechanical property of 0.19C-1.17Cr steel were investigated with cold drawing. This commercial steel has the microstructure that is consist of ferrite and pearlite. The tensile and yield strength are increased as the reduction ratio of cold drawing is increased. It was clear that mechanical properties could be improved by combination of the heat treatments and reduction ratio. Yield strength. tensile strength, and impact value were formulated as a constitutive function of cold drawing ratio, respectively.

  • PDF