• Title/Summary/Keyword: strength gain effect

Search Result 93, Processing Time 0.021 seconds

Study on the durability improvement of GFRP composites in alkaline environment (1) (알칼리 환경에 대한 GFRP 복합재료의 내구성 향상에 관한 연구(1))

  • Park, Chang-Ho;Kim, Hyoune-Yul;Park, Young-Hwan;Moon, Chang-Kwon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.145-149
    • /
    • 2006
  • The effect of alkaline environmental condition on durability of GFRP composites according to additives has been investigated. Additives used were polyvinyl alcohol (PVA), kaolin and alumina powder. Weight gains increased with immersion time in all GFRP composites at $80^{\circ}C$. But weight gain of specimen added PVA did not differ through the whole immersion time in both tap water and alkaline solution at 20 and $80^{\circ}C$. Tensile strength decreased with immersion time in all environment conditions. Tensile strength of GFRP composites regardless of additives decreased rapidly up to 5 days of immersion and then decreased slowly up to 30 days in alkaline solution environment at $80^{\circ}C$. The weight gains were not much difference in both tap water and alkaline solution at $20^{\circ}C$. But the ones of GFRP composites added PVA was smaller than the composites without additive in all aqueous at $20^{\circ}C$. Test strength of GFRP composites added polyvinyl alcohol has improved through the whole immersion time in both tap water and alkaline solution environment at $20^{\circ}C$.

  • PDF

Properties of Concrete Using Waste Pottery and Porcelain as Aggregates (폐도자기를 골재로 이용한 콘크리트의 특성)

  • Kang, Sung-Gu;Lee, Wan-Jo;Hwang, In-Dong;Park, Sung;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.99-103
    • /
    • 2005
  • Nowadays, large amount of waste pottery and porcelain annually are produced. It is needed that they are used as recycled materials in order to prevent environmental pollution and gain economic profits. Therefore, the purpose of this study is to present the method of utilizing the recycled aggregates that are obtained from waste pottery and porcelain as the concrete aggregate. The qualities of the recycled aggregate were compared with those of the crushed aggregate through measuring their physical properties. The test results showed that the replacement of crushed aggregate by recycled aggregate at the levels $10\%,\;20\%$, and $30\%$ had little effect on the compressive strength of the concretes, but higher levels of replacement reduced the compressive strength. Increment of the replacement of recycled aggregate caused increase in absorption ratio. As a conclusion, norman strength recycled aggregate concretes can be produced using less than $30\%$ of recycled aggregate.

Effects of Benzoic Acid and Dietary Calcium:Phosphorus Ratio on Performance and Mineral Metabolism of Weanling Pigs

  • Gutzwiller, A.;Schlegel, P.;Guggisberg, D.;Stoll, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.530-536
    • /
    • 2014
  • In a $2{\times}2$ factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions.

Study on the Self Diagnosis of Reinforced Concrete Beam Retrofitted by Composite Materials with Optical Fiber Sensors (광섬유 센서를 이용한 복합재료로 보수보강된 철근콘크리트 보의 자기진단 기법개발)

  • 김기수;신영수;김종우;전재홍;조윤범
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.57-60
    • /
    • 2001
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type fibrous composite materials are widely used. Retrofitted concrete columns and beams gain the stiffness and strength, but they lose toughness and show brittle failure. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, We try to detect peel out effect and find the strain difference between main structure and retrofitting patch material when they separate each other.

  • PDF

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

Carbon nanofiber-reinforced polymeric nanocomposites

  • Jang, Changwoon;Hutchins, John;Yu, Jaesang
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.197-205
    • /
    • 2013
  • Five vapor-grown carbon nanofiber (VGCNF) reinforced vinyl ester (VE) nanocomposite configurations were fabricated, imaged, and mechanically tested in order to obtain information on the influence and the interactions of the role of the microstructure at lower length scales on the observed continuum level properties/response. Three independent variables (the nanofiber weight fraction and two types of nanofiber mixing techniques) were chosen to be varied from low, middle, and high values at equally spaced intervals. Multiple mixing techniques were studied to gain insight into the effect of mixing on the VGCNF dispersion within the VE matrix. The point count method was used for both lower length-scale imaging techniques to provide quantitative approximations of the magnitude and the distribution of such lower length-scale features. Finally, an inverse relationship was shown to exist between the stiffness and strength properties of the resulting nanocomposites under uniaxial quasistatic compression loading.

Autogenous Shrinkage of Very-Early Strength Latex-Modified Concrete with Latex Contents (라텍스함량 변화에 따른 VES-LMC의 자기수축)

  • Park, Won-Il;Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1059-1065
    • /
    • 2010
  • Very-early strength latex-modified concrete (VES-LMC) was developed for the purpose of fast-track overlay of a concrete bridge deck under heavy traffic, concentrated on the workability, durability, and strength gain so that it can be opened to the traffic only three hours after its placement. The mixture of VES-LMC might accompany very high heat of hydration at early-age because of its inherent rapid hardening property and could have susceptibility to autogenous shrinkage because of its relatively low water-cement ratio. This study evaluated the effect of the latex-cement ratio(L/C) both of the constant and variable slumps on the autogenous shrinkage of VES-LMC by carrying out simple temperature rise test and early-age shrinkage experiment. Test results are as follows: The latex contributes on the enhancement of the concrete durability but has little effect on its hydration and the accompanied heat of hydration in VES-LMC. Autogenous shrinkage increased with the increase in latex-cement ratio at variable slumps and its pattern followed regularly a logarithmic increase. However, the influence of water-cement ratio and latex-cement ratios for the test specimens at constant slump on early-age autogenous shrinkage property was found to be minor due to the simultaneous effect of the two experimental variables.

Effect of Al Amount on the Sintering Behavior and Mechanical Properties of Reaction Bonded Alumina (반응 소결 Alumina의 소결거동과 기계적 성질에 미치는 Al 첨가량의 영향)

  • 장복기;문종하;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.519-527
    • /
    • 1997
  • The effect of Al content and heating rate on the sintering behavior, microstructure, and mechanical properties of reaction bonded alumina (RBAO) was investigated. As the heating rate became slower a critical Al content which could be added to RBAO increased. The weight gain and linear shrinkage of RBAO containing of 55 vol% Al were 28% and 6.5%, respectively. The relative density of RBAO decreased from 96 to 94%, as the amount of Al increased from 15 to 55 vol%. The hardness of RBAO increased from 17.8 to 19.9 GPa and the bending strength enhanced from 370 to 570 MPa, as the amount of Al increased from 15 to 55 vol%. On the other hand, the wear rate of RBAO degraded from 6.7 to 3.39$\times$10-5 $\textrm{mm}^2$/kg and the fracture toughness decreased from 4.1 to 3.6 MPa.m1/2, as the amount of Al increased from 15 to 55 vol%. Fracture modes were shown to the mixed mode of inter/transgranular. However, transgranular fracture was dominant with increasing the content of Al.

  • PDF

Study on the Thermal and Electrical Conductivity Properties of Titanium-sputtered Materials

  • Han, Hye Ree
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.530-544
    • /
    • 2022
  • Titanium exhibits substantial corrosion resistance, strength, and ductility, with a specific gravity of approximately 4.5 and a melting point of approximately 1800℃. It is currently used in aircraft parts and space development. This study considered the thermal characteristics, stealth effects of infrared thermal imaging cameras, electromagnetic shielding, and electrical conductivity of Ti-sputtered materials. Base materials of different densities and types were treated using titanium sputtering. Infrared thermal imaging showed a better stealth effect when the titanium layer was directed toward the outside. The film sample presented a better stealth effect than the fabrics did. In each of the samples subjected to titanium sputtering, when the titanium layer was directed outward, the untreated sample or exposed titanium layer showed surface temperatures lower than those of the samples with the titanium layer oriented toward the heat source. Additionally, after the titanium sputtering treatment, the films conducted electricity (low resistance) better than the fabrics did. All titanium-sputtered specimens presented reduced electromagnetic wave transmission and significantly reduced infrared transmission. These results are expected to apply to military uniforms (soldiers' protective clothing to gain the upper hand on the battlefield), medical sensors, multifunctional intelligent textiles and etc.

Effect of Phenol Formaldehyde Impregnation on The Physical and Mechanical Properties of Soft-Inner Part of Oil Palm Trunk

  • Hartono, Rudi;Hidayat, Wahyu;Wahyudi, Imam;Febrianto, Fauzi;Dwianto, Wahyu;Jang, Jae-Hyuk;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.842-851
    • /
    • 2016
  • The objective of this study was to improve physical and mechanical properties of soft-inner part of oil palm trunk (S-OPT) after impregnation with phenol formaldehyde (PF) resin and densification by close system compression (CSC) method. Effect of different methods of PF resin impregnation (i.e., no vacuum-pressure, vacuum, and vacuum-pressure) was evaluated. The results showed that PF resin impregnation and CSC significantly improved the physical and mechanical properties of S-OPT up to: (1) 176% in density; (2) 309% in modulus of rupture (MOR); (3) 287% modulus of elasticity (MOE); and (4) 191% in the compressive strength. Physical and mechanical properties of S-OPT showed their best performances when PF resin impregnated with vacuum-pressure method as shown by higher weight gain, density, MOR, MOE, compressive strength, and lower recovery of set due to better penetration of PF resin into S-OPT. Combining PF resin impregnation and densification by CSC method could be a good method to improve physical and mechanical properties of S-OPT.