• Title/Summary/Keyword: strength gain effect

Search Result 93, Processing Time 0.022 seconds

Development of shear capacity equations for RC beams strengthened with UHPFRC

  • Mansour, Walid;Sakr, Mohammed;Seleemah, Ayman;Tayeh, Bassam A.;Khalifa, Tarek
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.473-487
    • /
    • 2021
  • The review of the literature and design guidelines indicates a lack of design codes governing the shear strength of reinforced concrete (RC) beams strengthened with ultrahigh-performance fiber-reinforced concrete (UHPFRC). This study uses the results of a 3D finite element model constructed previously by the authors and verified against an experimental programme to gain a clear understanding of the shear strength of RC beams strengthened with UHPFRC by using different schemes. Experimental results found in the literature along with the numerical results for shear capacities of normal-strength RC and UHPFRC beams without stirrups are compared with available code design guidelines and empirical models found in the literature. The results show variance between the empirical models and the experimental results. Accordingly, proposed equations derived based on empirical models found in the literature were set to estimate the shear capacity of normal-strength RC beams without stirrups. In addition, the term 'shear span-to-depth ratio' is not considered in the equations for design guidelines found in the literature regarding the shear capacity of UHPFRC beams without stirrups. Consequently, a formula estimating the shear strength of UHPFRC and RC beams strengthened with UHPFRC plates and considering the effect of shear span-to-depth ratio is proposed and validated against an experimental programme previously conducted by the authors.

The Effect of Administration of Steroid on the Wound Breaking Tensile Strength in Rats (백서에서 스테로이드 투여가 창상 파열장력에 미치는 영향)

  • Kwon, Nam Ho;Kim, Han Koo;Kim, Woo Seob;Bae, Tae Hui
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.538-542
    • /
    • 2009
  • Purpose: The successful wound healing means the scarless wound with adequate strength. It has been shown in vivo and in vitro that steroid retard the collagen synthesis. We studied the effect of steroid on the wound breaking strength in rats. Methods: 40 Sprague - Dawley rats were evenly assigned to two groups. One group was served as control, the other group was experimental. We made dorsal midline incision and closed the wound. In the experimental group, we medicated methylprednisolone (0.15 mg/g/day) for 1 week. Then, we compared the differences of the breaking strength and microscopic histology between control and experimental group at 2, 4, 6 and 8 week. Results: Up to 4 week, the breaking strength of the experimental group was markedly decreased than that of control group, while at 6 week the strength of experimental group attained to that of control group nearly. In histologic findings, control group demonstrated dense organization of collagen to experimental group at 4th week. Conclusion: In this experiment, steroid significantly inhibited the strength gain in wound at early period of the wound healing process. When using steroid after the surgery or the wound formation, it is desirable to administrate carefully and need thorough wound management to prevent delayed wound healing.

Setting Time and Compressive Strength Gains of Glycocalix Coating Materials with Silica-based Accelerating Agents (실리케이트계 급결제를 혼입한 글라이코 캘릭스 코팅재의 응결시간 및 압축강도 발현 특성)

  • Jeong, Yun-Ji;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.105-111
    • /
    • 2020
  • The present study examined the effect of the silica-based accelerating agents on the setting time and compressive strength gain of biomimetic glycocalix coating materials that has been developed for protecting the substrate of concrete exposed to chemical and microbiological attacks. The accelerating agent contents varied from 10mL/L to 40mL/L in the mixtures of glycocalix coating materials determined for shotcrete and lining techniques. Test results showed that the setting time of coating materials containing accelerating agents was affected by the contents of the bacteria carrier. When the accelerating agent content was 40mL/L, the final setting time was 80 minutes for shotcrete mixtures and 318 minutes for lining mixtures. Meanwhile, the compressive strength gain of coating materials with accelerating agents tended to be lower than that of counterpart materials without accelerating agents.

Study on the Durability of GFRP Composites in Alkaline Environment(1) (알칼리 환경에 대한 GFRP 복합재료의 내구성에 관한 연구(1))

  • Moon, Yong-Jae;Park, Chang-Ho;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.58-63
    • /
    • 2008
  • The effect of alkaline environmental condition on durability of GFRP composites according to additives was investigated. Additives used were polyvinyl alcohol(PVA), kaolin and alumina powder. Weight gains increased with immersion time in all GFRP composites at $80^{\circ}C$. But weight gain of specimen added PVA did not differ through the wlwle immersion time in both tap water and alkaline solution at 20 and $80^{\circ}C$. Tensile strength decreased with immersion time in all environment conditions. Tensile strength of GFRP composites regardless of additives decreased rapidly up to 5 days of immersion and then decreased slowly up to 30 days in alkaline solution environment at $80^{\circ}C$. Weight gains had not. much difference in both tap water and alkaline solution at $20^{\circ}C$. And weight gain of GFRP composites added polyvinyl alcohol had smaller than the others through the whole immersion time in both tap water and alkaline solution at $20^{\circ}C$ and $80^{\circ}C$. Tensile strength of GFRP composites added polyvinyl alcohol had higher than the others through the whole immersion time in both tap water and alkaline solution at $20^{\circ}C$ and $80^{\circ}C$.

Determination of Removal Time of the Side Form in High Strength Concrete (고강도콘크리트 시공시 측면 거푸집 탈형시기의 결정)

  • Han Cheon-Goo;Han Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, method for the determination of removal time of the side forms in high strength concrete are discussed using the estimation model of compressive strength development, the development of bond strength and rebound number of P type Schmidt hammer in order to review the validity of existing regulation as to side form removal and offer effective quality control method. According to the results, as W/B increases by $10\%$, the setting time is shortened by about 2 hours. In the scope of the paper, required time to gain 8MPa of compressive strength is determined about 17 ${\~}$20 hours of age and $21{\~}25^{\circ}D{\cdot}D$ of maturity. Bond strength between form and concrete shows the highest value around final setting time, but decreases drastically after that. Amount of concrete sticking on the form is large before setting completed, but after that, its amount shows decline tendency. The rebound value test with P type schmidt hammer can be started faster by 2${\~}$3 hours than compressive strength test. It is also confirmed that the removal of forms is possible when the rebound value of P type schmidt hammer is more than 32. It is found from the results that existing regulation regarding removal time of the side form of high strength concrete provided in KCI needs no revision because required time to gain the strength provided in KCI has no adverse effect on strength development at early age and surface condition during stripping the side form. Effective procedure to decide the removal time of side form can be performed by applying P type Schmidt hammer.

The Effect of Boron Supplementation on Bone Strength in Ovariectomized Rats Fed with Diets Containing Different Calcium Levels

  • Choi, Mi-Kyeong;Kim, Mi-Hyun;Kang, Myung-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.242-248
    • /
    • 2005
  • The effect of calcium and boron supplementation on bone strength was determined in growing and ovariectomized (OVX) Sparague-Dawley rats. Rats were divided into 9 groups and fed diet with different intake levels of calcium and boron for 4 weeks. About fifty percentages of rats in each group were OVX and the others were sham-operated. The rats were fed same diets after operation for 8 weeks. The feed intake, body weight gain, and FER were significantly higher in OVX rats than those in sham-operated ones. Serum osteocalcin, bone formation biomarker, was significantly increased with increment in calcium and boron intakes. Serum estradiol was lower in OVX rats than in sham-operated ones. Bone mineral density of femur was significantly lower in OVX rats than in other group. The breaking forces of bones were not significantly different among the groups. The urinary excretion of deoxypyridinoline, osteolytic marker was significantly increased with increment in calcium intake and ovariectomy. The urinary calcium excretion was significantly increased with increment in calcium intake, but decreased with increment in boron intake. According to theses results, the boron supplementation resulted in higher serum osteocalcin and lower urinary calcium excretion. Therefore, it could be suggested that the boron supplementation may be complementary and useful to calcium nutrition for bone health.

The Effect of Zr element on the Properties of Continuous Casting and Rolling Materials for Al-0.11 wt.%Fe Alloy (Al-0.11 Fe계 합금에서의 Zr원소 미세첨가에 따른 연속주조재 및 압연재의 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Kim, Sung-Kyu;Kim, Han-Eol;Kim, Han-Sik;Kim, Ji-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.519-520
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especially, the effect of a very small amount of Zr element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr addition up to 0.3wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75\;kgf/mm^2$ and $420^{\circ}C$, was obtained at 0.3 wt.% Zr addition, respectively.

  • PDF

The Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.1.1-4
    • /
    • 1999
  • The toughening mechanism and fracture behavior of rubber/polymer composites were investigated with respect to two factors; (1) the composition ratio of polymers(PPO and PS which have a different chain flexibility) and (ii) the rubber particle size in PPO/PS blend system Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted, Finite element analysis were carried out to gain understanding of plastic deformation(shear yielding and crazing) of these materials.

  • PDF

Effect of Heattreatment condition on structure and properties of TiAl alloys (열처리 조건에 따른 TiAl화합물의 미세조직과 기계적 성질에 관하여)

  • Park, J.J.;Lee, C.H.;Choe, J.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.84-88
    • /
    • 1995
  • Various heat-treatments were conducted to Ti-48.1at%Al and Ti-48.3at%Al-1.2at%Mn alloys casted by plasma arc melting system. Mechanical properties, microstructure and high temperature oxidizing behaviors of as-casted and heat-treatment alloys were investigated. Ti-48.1Al and Ti-48.3Al-1.2Mn alloys were decreased in strength according to increased of heattreatment temperature. Oxidizing weight gain of Ti-48.1Al alloy which conducted at $1273^{\circ}K$ was linearly increased. In case of adding Mn to alloy, there was no rapid increase of oxidizing weight gain during early time.

  • PDF

Enhancement of Paper Characteristics by Polyvinyl Alcohol/Polyamide-epichlorohydrin Coating as a Complex Strength Additive (Polyvinyl Alcohol/Polyamide-epichlorohydrin 복합 지력증강제에 의한 종이 특성 향상)

  • Jang, Yunjae;Lee, Hwaljong;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.620-625
    • /
    • 2014
  • The effect of polyvinyl alcohol/polyamide-epichlorohydrin (PVA/PAE) complex strengthening additive on dry and wet strength and surface properties of paper was investigated. The enhancements of dry and wet strength and dimensional stability were found when PVA/PAE was applied as a complex strengthening additive compared with the cases of applying individual PVA or PAE. This was understood as physical crosslinking between PVA and PAE in the PVA/PAE complex strength additive. This complex strengthening additive also lowered surface roughness and increased sizing. As a result, PVA/PAE complex strengthening additive provided the distinctive gain dot in printed papers.