• Title/Summary/Keyword: strength gain effect

Search Result 93, Processing Time 0.019 seconds

Effects of Dietary Organic Selenium Levels on Performance and Selenium Retention in Broiler Chickens and Laying Hens (유기태 셀레늄의 첨가가 육계 및 산란계의 생산성 및 셀레늄 축적에 미치는 영향)

  • Na, J.C.;Kim, S.H.;Jang, B.G.;Kim, J.H.;Yu, D.J.;Kang, G.H.;Kim, H.K.;Lee, D.S.;Lee, S.J.;Lee, J.C.;Lee, W.J.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.4
    • /
    • pp.255-262
    • /
    • 2006
  • Two experiments were conducted to investigate the effect of dietary organic selenium levels on performance and selenium retention in broiler chickens and laying hens. In experiment 1, the effects of dietary organic selenium levels on the weight gain, feed intake, feed conversion, and selenium retention of meat and liver in broiler chickens were investigated. For each growth phase, the basal diet was supplemented with 0 (control), 0.60, 1.20, 1.80 and 2.40 ppm Se from selenium yeast(SY). Weight gain, feed intake, and feed conversion were not affected by the selenium addition in diets. Breast muscle Se levels were linearly increased (P<0.05) as dietary Se level increased by SY. Selenium concentration of liver tissue was increased (P<0.05) in supplemental SY compared to the control, and was increased (P<0.05) in supplemental 1.20, 1.80 and 2.40 ppm SY compared to the 0.60 ppm SY. In Experiment 2, 12-week-experiment using Hy-Line laying hens (68 wk of age) was conducted to examine the effects of dietary organic selenium on egg Production, egg weight, daily egg mass, feed intake, feed conversion, egg quality, and selenium concentration of eggs. A corn-soybean meal basal diet was supplemented with 0 (control), 0.30, 0.60, 0.90 and 1.20 ppm Se from selenium yeast (SY). Egg Production was significantly improved(P<0.05) in supplemental 0.30 and 0.90 ppm SY compared to the control and 0.60 ppm SY during week 1 to 12, but daily egg mass, feed intake, and feed conversion showed no difference in supplemental SY and control. Haugh unit, yolk color and eggshell breaking strength showed no difference in supplemental SY and control. Eggshell thickess was significantly (P<0.05) higher in supplemental 0.60 and 1.20 ppm SY compared to the 0.90 ppm SY in week 9. Egg Se levels were linearly increased (P<0.05) as dietary Se level increased by SY.

Effects of Feeding Colloidal Silver and Rare Earth Elements on Growth Performance in Broilers (콜로이드 은과 희토류 원소의 첨가가 육계 생산성에 미치는 영향)

  • Jo, Jong-Kwan;Kim, Jin-Soo;Yun, Ku;Kim, Young-Woo;Kim, Kwang-Hyun;Kwon, Il-Kyung;Chae, Byung-Jo
    • Korean Journal of Poultry Science
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • An experiment was conducted to investigate the effect of dietary supplementation of rare earth, individually and in combination with colloidal silver on growth performance, nutrient digestibility, carcass characteristics and immune response in broiler chicks. A total of 3,872 day-old chicks were randomly allotted to four dietary treatments in a randomized complete block design. There were four pens per treatment and 242 chicks per pen. The dietary treatments were T1) CON (control diet), T2) colloidal silver (control diet+20 ppb colloidal silver), T3) rare earth elements (control diet+500 ppm rare earth), T4) colloidal silver +rare earth elements (control diet+20 ppb colloidal silver+500 ppm rare earth). There were no significant differences in feed intake and feed conversion ratio (FCR) among dietary treatments during the whole experimental period (0 to 5 weeks). Body weight gain was greatest in birds fed T3 and T4 diets (p<0.01). Apparent digestibility of dry matter, crude protein, ether extract and calcium were greatest in birds fed T4 diet (p<0.05), while apparent digestibility of phosphorus was lowest in birds fed T3 diet (p<0.05). There was no significant difference in bone strength, carcass characteristics and immune response among dietary treatments. Dry matter content of bone was greatest in birds fed T4 diet (p<0.05), and phosphorus content of bone was greater in birds fed T3 diet than in birds fed T2 and T4 diets (p<0.05). Thus, the results of this study suggest that rare earth elements supplementation, individually and in combination with colloidal silver could improve performance of broilers.

Studies on the Meat Production and Woolskin Processing of Sheep and Korean Native Goats for Increasing Farm Income as a Family Subsidiary Work (농가부업(農家副業)의 소득향상(所得向上)을 위한 양육생산(羊肉生産) 및 모피가공(毛皮加工)에 관(關)한 연구(硏究))

  • Kwon, Soon-Ki;Kim, Jong-Woo;Han, Sung-Wook;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.93-114
    • /
    • 1978
  • The purpose of the study was to find out possible ways for increasing farm income through the sheep and Korean native goats farming, and to investigate meat productivity, wool productivity; woolskin utility, physiological characteristics and correlation between economical college animal farm of the Chungnam National University and sample farms in the suburbs of Dae jeon City were selected for feeding 20 heads of Corriedale wethers and another 20 heads Korean native kids as research materials for the periods of 5th May-26th November, 1977. The data such as growth rate, carcass, viscera weight, blood picture and plamsa components, hebage intake and economic traits were obtained and analysed. The result of the study are summarized as follows: 1. Meat production and quality 1) After 196days of feeding, the body weight of sheep and Korean native goats was increased by two times of those at the beginning of the trial, i.e. 20kg and 8kg respectively. 2) There was no significance of growth rates of sheep in housing and grazing. 3) The growth rate of Korean native goats were excellent at the mountainous areas of Gong ju-Gun where infectious diseases were not found 4) Accroding to the body measurements of 18-month-old sheep, percentages of hip height, body length, rump length, chest depth, chest width, hip width, chest girth and forearm circumference to the withers height were 103,%, 104%, 33%, 44%, 31%, 23%, 135% and 15% respectively, and those of hip height, body length, chest depth and chest girth of 8-month-old native goats to the withers height were 106%, 109%, 46% and 122,% respecitively. As a result, it was found that the percentage of hip height, body length and chest depth of Korean native goats were higher than those of sheep while that of the chest girth of goats was lower. 5) In the carcass data, 47, $52{\pm}2.27%$ of carcass percentage, $34.61{\pm}1.62%$ of lean meat, $26.07{\pm}2.51%$ of viscera, $9.75{\pm}1.4%$ of bone, and $20.95%{\pm}2.14%$ of woolskin for sheep, and $45.58{\pm}5.63%$ of carcass percentage, $27.62{\p}3.81%$ of meat, $34.86{\pm}4.16%$ of viscera, $11.66{\pm}1.83%$ of bone, $3.63{\pm}1.61%$ of skull and $9.26{\pm}2.41%$ of woolskin for native goats were obtained. 6) The contents of moisture, crude protein, crude fat and crude ash in native goat meat were much similar in both plots of housing and grazing. It was, however, known that the contents of moisture and protein were higher in grazinrg than in housing, while fat content was lower in grazing plots. 7) The weights of visceral organs shown similar tendency for both of sheep and native goats. For the weights of liver, heart, kidney and spleen, significance was not reconized among the treatments. Those of rumen, reticulum, small and large intestine were heavier in grazing than in housing, while the amount of visceral fat was heavier in housing. 2. Wool productivity and woolskin 1) The wool production of sheep for 7 months was $3.88{\pm}1.02kg$, and wool percentage, staple length, straighten length, wool growth per day and number of crimps were $9.27{\pm}1.48%$, 8. $47{\pm}1.00cm$, $10.63{\pm}0.99cm$, $0.40{\pm}0.04cm$ and $2.78{\pm}0.40$ respecitively. 2) The tensile strength and tear strength of woolskin treated by alum tanning were highest on the skin obtained from rump, i.e. $1,351kg/mm^2$ and $2,252kg/mm^2$ respectively, and they are in order of loin and shoulder. 3. Utilization and improvement of pasture. 1) The difference of herbage intake of native goats was not recognized between grazing and tethering, but the intake in the afternoon was s lightly higher than that in the morning. However the hervage intake of sheep was superior in grazing and in the afternoon. 2) The cultivation effect was lower in the native goat plots due to their cultivation abilities, in other words, the establishment rates of pasture by hoof cultivation were 60.25% in the goat plots and 77.35% in the sheep plots. 4. Correlation among economical traits. 1) The correlation between live weight of sheep and daily gain was higher. On the other hand, the correlation between other traits was not significant except that live weight, daily gain and lean meat percentage to the length of thoracic vertebrae. The live weight of native goats and meat production were highly correlated, and high correlation was also found between weights of carcass and meat. However, negative correlation was shown between viscera weight and live weight as well as daily gain. 2) The correlatoin between fleece weight of sheep and other traits such as live weight, daily gain and fleece percentage is very high at the 1% siginficant level, and this means that rapid-growth individuals can produce much fleece. 3) The correlation between the factors such as weights of live body, lean meat and viscera of sheep and body measurements, i. e. chest girth and body length was highest, and weights, of carcass and lean meat was highly correlated to chest width and depth. It will be therefore reasonable that the meat productivity estimates will have to be made on the basis of chest girth and body length. The meat production traits of native goats were highly correlated to the most of body measurement data, and the correlation coefficient between chest girth and weights of live body, carcass, lean meat and bone percentage was very high, i. e. 0.992-0.974 in particular. The correlations of meat production traits to chest depth, forearm circumference, body length were 0.759-0.911, 0.759-0.909 and 0.708-0.872 respectively. Therefore, the meat production of native goats will have to be estimated on the basis of chest data. 5. Blood picture and plasma components. 1) The number of erythrocyte and MCHC of native goats were $12.93{\times}10^6/mm^3$ and 36.14%, and those of sheep were $10.68{\times}10^6/mm^3$ and 36.26 respectively. The values of native goats were significantly higher than those of sheep. 2) The hemoglobin concentration, PVC, MCV and MCR of native goats were 10.92 g/100ml, $23.40{\mu}^3$ and 10.94 pg, and those of sheep were 11.73 g/100ml, 36.25 ml/100ml, $33.97{\mu}^3$ and 30.2 ml/100ml 8.43 pg respectively. The values of native goats were significantly lower those of sheep. 3) The number of leukocytes of native goats was significantly higher than that of sheep, that is, $11.64{\times}10^3/mm^3$ in native goats and $9.32{\times}10^3/mm^3$ in sheep. 4) In differential count of leukocyte, neutrophil was significantly high in native goats while lympocyte in sheep. On the other hand, the basophil, eosinophil and monocyte were not significant between native goats and sheep. 5) The amounts of total protein and glucose in the plasma of native goats were 6.2g/100ml and 53.6mg/100ml, and those of sheep were 5.6g/100ml and 45.7mg/100ml, which means that the values of native goats were significantly higher that those of sheep. The amount of total-lipid of native goats(127.6mg/100ml) was significantly than that of sheep(149.6mg/100ml). 6) The amount of non-protein nitrogen, cholesterol, Ca, P, K, Na and Cl were not different between native goats and sheep. 6. Economic analysis. 1) The gross revenue of a farm which fed native goats and sheep was 4,000won per head and the optimum size for feeding them in a farm as a subsidiary work is 5-10 heads. 2) Since there was no difference between housing and grazing, they can be fed in group for farm's subsidiary work. 3) They can be also fed by youths and house wives in the suburbs of cities, because labour requirement is estimated as only two hours per days for feeding 5 heads of native goats and sheep.

  • PDF