• Title/Summary/Keyword: strength enhancement

Search Result 667, Processing Time 0.447 seconds

Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.921-947
    • /
    • 2016
  • Concrete Filled Fibre Reinforced Polymer Tube (CFFT) for new columns construction has attracted significant research attention in recent years. The CFFT acts as a formwork for new columns and a barrier to corrosion accelerating agents. It significantly increases both the strength capacity (Strength enhancement ratio) and the ductility (Strain enhancement ratio) of reinforced concrete columns. In this study, based on predefined selection criteria, experimental investigation results of 134 circular CFFT columns under axial compression have been compiled and analysed from 599 CFFT specimens available in the literature. It has been observed that actual confinement ratio (expressed as a function of material properties of fibres, diameter of CFFT and compressive strength of concrete) has significant influence on the strength and ductility of circular CFFT columns. Design oriented models have been proposed to compute the strength and strain enhancement ratios of circular CFFT columns. The proposed strength and strain enhancement ratio models have significantly reduced Average Absolute Error (AAE), Mean Square Error (MSE), Relative Standard Error of Estimate (RSEE) and Standard Deviation (SD) as compared to other available strength and strain enhancement ratios of circular CFFT column models. The predictions of the proposed strength and strain enhancement ratio models match well with the experimental strength and strain enhancement ratios investigation results in the compiled database.

Confined Effect of Ultra High Strength Reinforced Concrete Tied Columns (초고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • Han, Byum Seok;Shin, Sung Woo;Kim, Tae Soo
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.105-111
    • /
    • 2007
  • As this study investigates the influence about type of transverse reinforcement, spacing of transverse reinforcement(s), volumetric ratios of transverse reinforcement(${\rho}s$) of ultra-high strength concrete columns. It try to offer to resonable basic data of the confined model for the ultra-high concrete of in reinforced concrete columns. Experimental tests with large scaled columns were conducted under concentric axial loads. The ultra-high strength concrete (100MPa) was used. From this test result, it evaluate influence of the strength enhancement and ductility enhancement, important variables about behavior of the confined concrete by confinement of ultra-high strength reinforced concrete.There are two ways to improve the confinement effect of high strength concrete columns through the increase of amounts and/or strength of transverse reinforcement.

Formulation design of chloride-free cement additive by response surface methodology

  • Zhu, Zi-chen;Gu, Ding-cheng
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • The influences of chloride-free components of the cement additive: triethanolamine, triisopropanolamine, sodium hyposulfite and calcium gluconate on the 1d, 3d and 28d compressive strength of cement were investigated by response surface methodology. It found the early strength activators, triethanolamine and sodium hyposulfite could enhance the 1d strength of cement effectively but they did not contribute to the 3d strength enhancement, and further their interaction was able to decrease the 28d strength of cement. Calcium gluconate was not that effective for the strength enhancement on 3 and 28 days when it's simply dosed. However the interaction effect of calcium gluconate with triisopropanolamine could strongly favor the strength enhancement of cement after 3 days. Results indicated it was necessary to focus attention on the potential interactions among the chemical components. And for the concern of four chemicals studied in this paper, it was feasible to formulated a kind of chloride-free cement additive that can be effective for the early strength of cement and its the strength after 3 days.

Development of Durability Enhancement Technology for Arc Weldings in Advanced High Strength Steel (AHSS) Chassis Parts (고장력강판 적용 샤시부품의 용접부 내구수명 향상기술 개발)

  • Lee, Kwang Bok;Oh, Seung Taik
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.50-56
    • /
    • 2015
  • In general, discontinuity of metallurgical and structural points of weld zone could decline the fatigue strength. For the lightweight trend, the AHSS application in automotive chassis is in-progress. However, there are few research reports on AHSS welds fatigue strength in especially automotive chassis parts. Therefore, in this study, we evaluated the effects of the factors affecting the AHSS welding fatigue strength. As the result, the stress concentration of weld bead is the most important factor for welding fatigue strength. For the enhancement of welding fatigue strength, we focused on reducing the stress concentration of the welding beads. So, we applied and proved the plasma welding process and GTAW (Gas Tungsten Arc Welding) dressing method. It was verified by uniaxial fatigue specimen, fatigue performance increased from 40 to 60% by applying TIG dressing method compared to the conventional GMAW (Gas Metal Arc Welding). These results could be recommended the enhancement of fatigue performance of AHSS.

A Study on Improvement and Estimation of Fatigue Strength in Sintering Spur Gear (소결치차의 성능향상과 강도평가에 관한 연구)

  • 류성기;문봉호
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.53-58
    • /
    • 1996
  • This paper deals with the bending fatigue strength of sintering spur gears. The test specimens are used to sintering spur gear to be consisted of Fe-C-Ni-Mn and SCM415 spur gear. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and the enhancement of fatigue strength due to carburized treatment is clarified, Accordingly, this study presents the fatigue strength of sintering spur gear, SCM415 spur gear and carburized gears of them. The strength enhancement due to the carburized treatment is discussed.

  • PDF

Compressive Strength Enhancement of Concrete Cylinders Confined with FRP Wrapping (FRP로 횡보강된 콘크리트 공시체의 압축강도 향상에 관한 연구)

  • 김영섭;정영수;박창규;송희원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.351-354
    • /
    • 2003
  • Triaxial behavior of concrete cylinders wrapped with FRP material has been investigated for the increase of concrete strength by lateral confinement. Using the model by Richart et al., a modified empirical equation was proposed to estimate the strength of concrete cylinders with FRP confinement based on the linear relationship between the concrete strength and lateral confining pressure. From the experimental stress-strain result of the cylinder specimens having similar confining pressure, less ductility was observed for higher strength concrete. But the compressive strength of the specimen was linearly increased by lateral confinement. The confinement effectiveness coefficient for the strength enhancement of the cylinders by FRP wrap was obtained as 2.27 from the regression analysis.

  • PDF

Influence of silpozz and rice husk ash on enhancement of concrete strength

  • Panda, K.C.;Prusty, S.D.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.203-221
    • /
    • 2015
  • This paper presents the results of a study undertaken to investigate the enhancement of concrete strength using Silpozz and Rice Husk Ash (RHA). The total percentage of supplementary cementitious material (SCM) substituted in this study was 20%. Six different concrete mixes were prepared such as without replacement of cement with silpozz and RHA (0% silpozz and 0% RHA) is treated as conventional concrete, whereas in other five concrete mixes cement was replaced by 20% of silpozz and RHA as (0% silpozz and 20% RHA), (5% silpozz and 15% RHA), (10% silpozz and 10% RHA), (15% silpozz and 5% RHA) and (20% silpozz and 0% RHA) with decreasing water-binder (w/b) ratio i.e. 0.375, 0.325 and 0.275 and increasing super plasticiser dose. New generation polycarboxylate base water reducing admixture i.e., Cera Hyperplast XR-W40 was used in this study. The results of this research indicate that as w/b decreases, super plasticiser dose need to be increased so as to increase the workability of concrete. The effects of replacing cement by silpozz and RHA on the compressive strength, split tensile strength and flexural strength were evaluated. The concrete mixture with different combination of silpozz and RHA gives higher strength as compared to control specimen for all w/b ratios and also observed that the early age strength of concrete is more as compared to the later age strength. It is also observed that the strength enhancement of concrete mixture prepared with the combination of cement, silpozz and RHA is higher as compared to the concrete mixture prepared with cement and silpozz or cement and RHA.

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

The Development of Marital Enhancement Program Based on Reality Therapy (RT를 적용한 부부관계향상 프로그램 개발)

  • Jeon, Young-Ja
    • Korean Journal of Human Ecology
    • /
    • v.14 no.2
    • /
    • pp.241-250
    • /
    • 2005
  • The purpose of this study is to develop a marital enhancement program based on reality therapy. The program consists of 8 session contents: program orientation, need strength profile between husband and wife, quality world and marital life, perception about marital life, comparison between quality world and perceived world, total behavior in marital life, communication between husband and wife, integration and application. This study mainly focuses on applying counseling theory (choice theory and reality therapy) to family life education for enhancing a conjugal relationship. In this way, participants of Marital Enhancement Program can experience a therapeutic effect as well as an educational effect.

  • PDF

Compressive strength prediction by ANN formulation approach for CFRP confined concrete cylinders

  • Fathi, Mojtaba;Jalal, Mostafa;Rostami, Soghra
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1171-1190
    • /
    • 2015
  • Enhancement of strength and ductility is the main reason for the extensive use of FRP jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP-confined concrete for practical design purposes. This study presents a new approach to obtain strength enhancement of CFRP (carbon fiber reinforced polymer) confined concrete cylinders by applying artificial neural networks (ANNs). The proposed ANN model is based on experimental results collected from literature. It represents the ultimate strength of concrete cylinders after CFRP confinement which is also given in explicit form in terms of geometrical and mechanical parameters. The accuracy of the proposed ANN model is quite satisfactory when compared to experimental results. Moreover, the results of the proposed ANN model are compared with five important theoretical models proposed by researchers so far and considered to be in good agreement.