• 제목/요약/키워드: strength ductility

검색결과 1,752건 처리시간 0.025초

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구 (An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region)

  • 손혁수;김준범;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Effect of confined concrete on compressive strength of RC beams

  • Radnic, Jure;Markic, Radoslav;Harapin, Alen;Matesan, Domagoj
    • Advances in concrete construction
    • /
    • 제1권3호
    • /
    • pp.215-225
    • /
    • 2013
  • The results of experimental testing of the effect of confined concrete on compressive strength and ductility of concrete beam subjected to pure bending are presented. The effect of different stirrups forms and spacing, as well as different concrete strengths, on beam carrying capacity and ductility were analyzed. Ultimate strength capacity and deflection of concrete beam increase with the decrease in stirrups spacing. Stirrup form has a great effect on the ultimate carrying capacity and ductility of concrete beam. Stirrups which confined the region of concrete in the compression more contribute to greater compression strength of concrete than common stirrups at the perimeter of the entire cross-section of the beam.

Bending-shear Strength of Concrete-filled Double Skin Circular Steel Tubular Beams with SMA and Rebar in Normal-and-High-strength Concrete

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2021
  • A concrete-filled circular steel tube beam was fabricated, and a bending test was performed to analyze its failure modes, displacement ductility, bending-shear strength, and load-central deflection relationship. For the bending test, the installation position of the shape memory alloy (SMA) inside and outside the double-skin steel tube was used, and the rebar installation position, the concrete strength, the mixing of fibers, and the inner-outer diameter ratio as the main parameters. The test results showed that the installation positions of the reinforcements inside and outside the double-skin steel tube and the inner-outer diameter ratio of the steel tube affected the ductility, maximum load, and failure mode. In general, the specimen made of general concrete with SMA installed outside and inside (OI) the double-skin steel tube showed the best results.

Static push-out test on steel and recycled tire rubber-filled concrete composite beams

  • Han, Qing-Hua;Xu, Jie;Xing, Ying;Li, Zi-Lin
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.843-860
    • /
    • 2015
  • Recycled tire rubber-filled concrete (RRFC) is employed into the steel-concrete composite structures due to its good ductility and crack resistance. Push-out tests were conducted to investigate the static behavior of steel and rubber-filled concrete composite beam with different rubber mixed concrete and studs. The results of the experimental investigations show that large studs lead a higher ultimate strength but worse ductility in normal concrete. Rubber particles in RRFC were shown to have little effect on shear strength when the compressive strength was equal to that of normal concrete, but can have a better ductility for studs in rubber-filled concrete. This improvement is more obvious for the composite beam with large stud to make good use of the high strength. Besides that the uplift of concrete slabs can be increased and the quantity and width of cracks can be reduced by RRFC efficiently. Based on the test result, a modified empirical equation of ultimate slip was proposed to take not only the compressive strength, but also the ductility of the concrete into consideration.

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

고강도 철근을 활용한 휨 부재의 연성거동에 관한 연구 (Flexural Behavior of RC Beams Using High-Strength Reinforcement for Ductility Assessment)

  • 권순범;윤영수
    • 한국방재학회 논문집
    • /
    • 제2권1호
    • /
    • pp.119-126
    • /
    • 2002
  • 본 논문에서는 콘크리트의 고강도화에 따른 고강도 철근의 사용 가능성과 적절한 철근강도를 연구하고자 콘크리트의 강도, 철근강도, 철근비를 주요 변수로 하여 9개의 보 실험체를 계획하였다. 2점 재하를 실시, 휨강도, 응력 이력곡선, 인장철근 항복시의 처짐량, 파괴시의 처짐량, 균열, 연성지수를 측정하여 변수에 따른 구조적 거동을 분석하였다. 고강도 철근을 적용한 부재는 항복점의 변위가 크게 나타났고, 이러한 특성이 연성지수의 감소를 가져오는 주요 요인으로 밝혀졌다. 그러나 항복이후의 거동은 동일한 강성을 갖는 일반강도철근의 부재와 유사하게 나타났다. 일반적으로 고강도 철근의 적용 시 평형철근비의 감소에 의한 철근비의 증가로 연성거동의 감소효과가 나타나고 있으나, 콘크리트의 강도를 증가시키면 연성의 증대효과를 기대할 수 있고, 본 논문으로부터 철근강도 $5500kgf/cm^2$의 경우 콘크리트 강도는 $800kgf/cm^2$ 정도가 기존 연성의 손실 없이 휨 강도를 증가시킬 수 있는 적절한 조합으로 기존의 콘크리트와 동일한 연성거동을 기대할 수 있을 것으로 나타났다.

전단벽의 연성도에 대한 단부보강 H형강 철물의 효과 (Experiment Study on Ductility of Composite Shear Walls)

  • 박홍근;오재은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.53-58
    • /
    • 2001
  • Composite boundary elements with H steel sections could be used to enhance the strength and ductility of high-rise shear walls. The enhancement of earthquake resistance is expected to be achieved due to the inherent strength and ductility of the steel sections, and also due to the confinement effect to a core concrete. Experimental study were peformed for the compression zone of composite shear walls with multiple H sections at the boundaries. The effect of the steel sections on the overall behavior of the composite shear walls were investigated. Also, additional tests were conducted to investigate the contribution of H sections to the confinement of concrete.

  • PDF

휨재의 인성개선에 관한 연구 (Studies on Improvement of Ductility of Flexural Members)

  • 정일영
    • 콘크리트학회지
    • /
    • 제5권3호
    • /
    • pp.125-132
    • /
    • 1993
  • 콘크리트의 인성개선을 위하여 횡보강근을 사용할 수 있으나 보통강도으 철근ㅇ르 사용하였을 경우에는 조속한 철근의 강상으로 인한 콘크리트으 인성개선효과가 급격히 떨어지기 때문에 고강도 횡보강도에 의한 압축인성 개선효과를 이론 및 실험으로 고찰하였다. 실험결과 각 공시체의 변형능력을 비교해 보면 보통강도근의 경우 콘크리트 응력블록계수가 최대일 때 콘크리트의 압축단 변형도가 1%내외인데 비하여 고강도근으로 횡보강하였을 경우가 콘크리트의 압축변형도는 2%로서 충분한 휨압축 인성개선용으로 콘크리트의 충분한 인성개선이 가능하다고 볼 수 있다.

Experimental and theoretical studies of confined HSCFST columns under uni-axial compression

  • Lai, M.H.;Ho, J.C.M.
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.527-552
    • /
    • 2014
  • The development of modern concrete technology makes it much easier to produce high-strength concrete (HSC) or ultra-high-strength concrete (UHSC) with high workability. However, the application of this concrete is limited in practical construction of traditional reinforced concrete (RC) structures due to low-ductility performance. To further push up the limit of the design concrete strength, concrete-filled-steel-tube (CFST) columns have been recommended considering its superior strength and ductility performance. However, the beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby reducing the elastic strength and stiffness of the CFST columns. To resolve this problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel. In this paper, a total of 29 high-strength CFST (HSCFST) columns of various dimensions cast with concrete strength of 75 to 120 MPa concrete and installed with external steel rings were tested under uni-axial compression. From the results, it can be concluded that the proposed ring installation can further improve both strength and ductility of HSCFST columns by restricting the column dilation. Lastly, an analytical model calculating the uni-axial strength of ring-confined HSCFST columns is proposed and verified based on the Von-Mises and Mohr-Coulomb failure criteria for steel tube and in-filled concrete, respectively.