• Title/Summary/Keyword: strength development constant

Search Result 137, Processing Time 0.03 seconds

Fabrication of High Density BZN-PVDF Composite Film by Aerosol Deposition for High Energy Storage Properties (상온분말분사공정을 이용한 고밀도 폴리머-세라믹 혼합 코팅층 제조 및 에너지 저장 특성 향상)

  • Lim, Ji-Ho;Kim, Jin-Woo;Lee, Seung Hee;Park, Chun-kil;Ryu, Jungho;Choi, Doo hyun;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.175-182
    • /
    • 2019
  • This study examines paraelectric $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ (BZN), which has no hysteresis and high dielectric strength, for energy density capacitor applications. To increase the breakdown dielectric strength of the BZN film further, poly(vinylidene fluoride) BZN-PVDF composite film is fabricated by aerosol deposition. The volume ratio of each composition is calculated using dielectric constant of each composition, and we find that it was 12:88 vol% (BZN:PVDF). To modulate the structure and dielectric properties of the ferroelectric polymer PVDF, the composite film is heat-treated at $200^{\circ}C$ for 5 and 30 minutes following quenching. The amount of ${\alpha}-phase$ in the PVDF increases with an increasing annealing time, which in turn decreases the dielectric constant and dielectric loss. The breakdown dielectric strength of the BZN film increases by mixing PVDF. However, the breakdown field decreases with an increasing annealing time. The BZN-PVDF composite film has the energy density of $4.9J/cm^3$, which is larger than that of the pure BZN film of $3.6J/cm^3$.

Compressive Strength and Healing Performance of Mortar Using Self-healing Inorganic Materials (자기치유형 무기계 혼합재를 사용한 모르타르의 압축강도 및 치유성능)

  • Hyung-Suk, Kim;Woong-Jong, Lee;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • In this study, the characteristics of self-healing mortars produced using an inorganic self-healing material consisting of ground granulated blast furnace slag, expansion agent, and anhydrite, were investigated. For three types of self-healing mortars with different amounts of the inorganic healing material, compressive strength was measured and the self-healing performance was evaluated through the constant water head permeability test. The healing rate and equivalent crack width according to crack-induced aging were used as indicies of healing performance evaluation. Considering the development of compressive strength of the self-healing mortars, the change in the healing rate with healing periods, and the economic feasibility, the optimal amount of inorganic self-healing materials was suggested as 20 % of the mass of cement.

Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend

  • Mala, Kanchan;Mullick, A.K.;Jain, K.K.;Singh, P.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.239-249
    • /
    • 2013
  • In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of OPC and different mineral admixtures, is the judicious choice for the construction industry. Silica fume (SF) and fly ash (FA) are the most commonly used mineral admixtures in ternary blend cement systems. Synergy between the contributions of both on the mechanical properties of the concrete is an important factor. This study reports the effect of replacement of OPC by fly ash (20, 30, 40 and 50 % replacement of OPC) and/or silica fume (7 and 10 %) on the mechanical properties of concrete like compressive strength and split tensile strength, with three different w/b ratio of 0.3, 0.4 and 0.45. The results indicate that, as the total replacement level of OPC in concrete using ternary blend of OPC + FA + SF increases, the strength with respect to control mix increases up to certain replacement level and thereafter decreases. If the cement content of control mixes at each w/b ratio is kept constant, then as w/b ratio decreases, higher percentage of OPC can be replaced with FA + SF to get 28 days strength comparable to the control mix. A new method was proposed to find the efficiency factor of SF and FA individually in ternary blend cement system, based on principle of modified Bolomey's equation for predicting compressive strength of concrete using binary blend cement system. Efficiency factor for SF and FA were always higher in ternary blend cement system than their respective binary blend cement system. Split tensile strength of concrete using binary and ternary cement system were higher than OPC for a given compressive strength level.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Tensile response of steel/CFRP adhesive bonds for the rehabilitation of civil structures

  • Matta, F.;Karbhari, Vistasp M.;Vitaliani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.589-608
    • /
    • 2005
  • There is a growing need for the development and implementation of new methods for the rapid and cost-effective rehabilitation of deteriorating steel structural components to offset the drawbacks related to welding and/or bolting in the field. Carbon fiber reinforced polymer (CFRP) composites provide a potential alternative as externally bonded patches for strengthening and repair of metallic structural members for building and bridge systems. This paper describes results of an investigation of tensile and fatigue response of steel/CFRP joints simulating scenarios of strengthening and crack-patching. It is shown that appropriately designed schemes, even when fabricated with levels of inaccuracy as could be expected in the field, can provide significant strain relief and load transfer capability. A simplified elasto-plastic closed form solution for stress analysis is presented, and validated experimentally. It is shown that the bond development length remains constant in the linear range, whereas it increases as the adhesive is deformed plastically. Fatigue resistance is shown to be at least comparable with the requirements for welded cover plates without attendant decreases in stiffness and strength.

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.237-243
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water-cement ratio. Based on the regression results, the influence of fly ash replacement content and water-cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water-cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water-cement ratio. But, the concrete with water-cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water-cement ratio.

An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation

  • Kim, Sung Jin;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.209-225
    • /
    • 2017
  • Development of high strength steel requires proper understanding of hydrogen behavior since the higher the steel strength the greater the susceptibility of hydrogen assisted cracking. This paper provides a brief but broad overview on hydrogen entry and transport behavior of high-strength ferritic steels. First of all, hydrogen absorption, diffusion and trapping mechanism of the steels are briefly introduced. Secondly, several experimental methods for analyzing the physical/chemical nature of hydrogen uptake and transport in the steels are reviewed. Among the methods, electrochemical permeation technique utilized widely for evaluating the hydrogen diffusion and trapping behavior in metals and alloys is mainly discussed. Moreover, a modified permeation technique accommodating the externally applied load and its application to a variety of steels are intensively explored. Indeed, successful utilization of the modified permeation technique equipped with a constant load testing device leads to significant academic progress on the hydrogen assisted cracking (HAC) phenomenon of the steels. In order to show how the external and/or residual stress affects mechanical instability of steel due to hydrogen ingress, the relationship among the microstructure, hydrogen permeation, and HAC susceptibility is briefly introduced.

Spatting and Fire Enduring Properties of High Strength RC Column Subjected to Axial Load Depending on Fiber Contents (중심 축하중을 받는 고강도 RC기둥의 섬유 혼입량에 따른 폭열 및 내화 성상)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Jae-Sam;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.83-90
    • /
    • 2006
  • This paper investigates experimentally the fire resistance performance and spatting resistance of high performance reinforced concrete column member subjected to fire containing polypropylene fiber(PP fiber) and cellulose fiber(CL fiber). An increase in PP fiber and CL fiber contents, respectively resulted in a reduction of fluidity due to fiber ball effect. Air content is constant with m increase in fiber content. Compressive strength reached beyond 50 MPa. Based on fire resistance test, severe failure occurred with control concrete specimen, which caused exposure of reinforcing bar. No spall occurred with specimen containing PP fiber. This is due to the discharge of internal vapour pressure. Use of CL fiber superior to control concrete in the side of spatting resistance, localized failure at comer of specimen was observed. Corner of specimen had deeper neutralization than surface of specimen. Specimen containing PP fiber had the least damaged area due to spatting. Neutralization depth ranged between 6 and 8 mm Residual compressive strength of specimen containing PP fiber maintained 40%, which is larger than control concrete with 20% of residual strength. Specimen containing CL fiber had 25% or residual strength.

The Optimal Method to Determine Damage Threshold of Rock using Hwangdeung Granite (황등화강암을 이용한 암석의 손상기준 결정방법 연구)

  • Jang, Bo-An;Ji, Hoon;Jang, Hyun-Shic
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • Although various methods for determination of damage threshold in rock have been suggested, clear damage thresholds were determined by some methods, but different thresholds were measured by other methods. We determined the damage thresholds in Hangdeung granite using all the methods suggested, and investigated the best methods, applicability and errors of each method. The crack initiation threshold and the crack damage threshold which are important in investigation of characteristics of crack development and failure were verified by field strength ratio method and long-term constant load test. The crack closure stress and the crack initiation stress were 57.5 MPa and 77.6 MPa, and the most exact values were yielded by crack volumetric strain. The secondary crack initiation stress was 90.6 MPa and AE event count and AE event count rate were the effective methods. The volumetric stiffness, AE event count and AE event count rate were the most effective methods for determination of crack coalescence threshold and crack coalescence stress was 110.3 MPa. The crack damage stress was 127.5 MPa and was measured correctly by volumetric stiffness and AE event count rate. The ratio between crack initiation stress and uniaxial compressive strength was 0.47 which was very similar with the FSR value of 0.46. The ratio between crack damage stress and uniaxial compressive strength was almost the same as the ratio between long-term strength and uniaxial compressive strength, indicating that the crack initiation stress and the crack damage stress measured were correct.

Evaluation on Compressive Strength Development and Thermal Conductivity of Cement Pastes Containing Aerogels with Hydrophilic Surface Treatment (친수성 표면개질의 에어로겔을 혼입한 시멘트 페이스트의 압축강도 발현 및 열전도율 평가)

  • Ahn, Tae-Ho;Park, Jong-Beom;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2018
  • The objective of the present study is to examine the feasibility on the development of high-insulation concrete using aerogels with hydrophilic surface treatment. To prevent the segregation and enhance the dispersibility of agerogels in the cement pastes, the substrate of aerogels was modified to be hydrophobic property using surfactant. The modified aerogels were added from 0% to 100% of the cement volume at the interval of 25% under the constant cement content. Some cement pastes showed segregation phenomenon and flocculation of aerogels during mixing phase. The addition of aerogels decreased the compressive strength of cement pastes but enhanced the thermal conductivity. The thermal conductivity of pastes with 100% aerogels was lower by 43% when compared with that measured in the conventional paste. To improve the compressive strength and insulation capacity of concrete containing aerogels, a reliable surface treatment method of aerogels needs to be further investigated.