• Title/Summary/Keyword: strength development constant

Search Result 137, Processing Time 0.026 seconds

Effect of Bentonite on the Mechanical Properties of ABS Resin (Bentonite가 ABS 수지의 기계적 물성에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.981-989
    • /
    • 1994
  • For the development of new material used bentonite in ceramic/organic material composite, ABS(acrylonitrile-butadiene-styrene) material was used as a matrix polymer and a series of bentonite was blended together. This bentonite, filler like talc or mica for plastic material, was used since natural bentonite(Ca type) is easily obtainable in Korea, Na-bentonite changed from natural bentonite by $Na_2CO_3$ based on the specified compositions, changes in the static and dynamic mechanical properties. It was discovered that the increased content of natural and Na- bentonite results in higher modulus with reduced impact strength. And Rockwell hardness was constant. And Na- bentonite filled polymer showed improvement in impact strength and lower in modulus as the natural bentonite filled polymer. The storage modulus(E') of Na- bentonite filled ABS resin was higher than that of Ca- bentonite filled ABS resin, while higher temperature, storage modulus(E') decreased. At higher frequency, tan ${\delta}$ peak was shifted at high temperature.

  • PDF

A Basic Study on the Development of Floating Fish Aggregating Devices , Part I - Laboratory Static Tests on Synthetic Fiber Ropes - (부어초 개발에 관한 기초 연구(I) - 인조섬유 로우프의 정적시험 -)

  • H. Shin;K. Yamakawa;S. Hara;K.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.22-31
    • /
    • 1994
  • Fish aggregating devices(FAD) or artificial fish reefs deployed in the ocean space have been developed in various forms. The objective of FAD is to aggregate, cultivate and proliferate aquatic resources by making changes in ocean flows around it. developing spawning grounds, improving feeding areas and protecting larvae and juveniles. Most floating fish aggregating devices(FFAD) are in the form of surface buoys or subsurface buoys with a single point mooring system(SPMS). The mooring line of SPMS for the secure positions of FFAD is expected to keep great stresses as a result of the harsh ocean environment. Laboratory static tests on synthetic fiber ropes used for the SPMS were run. The Nylon wet rope specimen tests under increasing-and-decreasing loads showed about 20% strength drop. Also the logarithmic creep-tie behavior of fiber ropes was observed in the constant load test and compared with Flessner's formula.

  • PDF

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea;Jebie Balagosa;Seok Yoon;Yun Wook Choo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1854-1862
    • /
    • 2024
  • This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading (휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델)

  • Chae, Young-Suk;Tae, Ghi-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.

Improvement of Formability in the Multi-Stage Sheet Pair Hydroforming Process (박판 페어 하이드로포밍 공정의 성형성 향상을 위한 다단 성형 공정의 개발)

  • 김태정;정창균;양동열;한수식
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.702-709
    • /
    • 2003
  • In the automotive industry hydroforming of sheet metal pairs have received special attention because materials for various sheet metal components of vehicles have changed into the high strength steel, aluminum, and titanium blank having low formability. Uniform deformation over the whole region is a main advantage in the sheet hydroforming process. Because upper and lower parts could be produced simultaneously with one tool, hydroforming of sheet metal pairs is competitive in reducing the lead-time and development cost. In this paper, the multi-stage hydroforming process of sheet pair is proposed in order to increase the formability of a structural part like the oil pan shape. The upper die for forming oil pan shape is divided into two parts which can move separately. By the finite element simulation, the design parameters such as geometry of the tool and detailed specification of hydraulic pump were calculated and verified. For the strict comparison of the proposed process, the blank holding force is kept to a constant value during deformation by hydraulic valve. The deformed shape and strain distribution of the manufactured parts with the proposed process are compared with the results of simulation. In the multi-stage hydroforming process, maximum thickness strain was improved by more than 30 percent.

A Study on the Evaluation of Physical Properties of Polymer-based Composite Materials for the Brake of the Automobile (자동차 브레이크용 고분자복합재료의 물리적 특성평가에 관한 연구)

  • Son, Tae Gwan;Kim, Yun Hae;Kim, Bong Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.75-75
    • /
    • 1996
  • The rapid expansion for the auto-industry and the worldwide trend toward non-asbestos friction materials for brake lining force our industry to transfer into non-asbestos ones from asbestos-based friction materials. Furthermore, it is imperative for the friction materials to have technological excellence and lower production cost to be competitive in the world market. There is no known theoretical procedures to formulate friction materials. It, rather, depends on the trial and error process. Thus, it is quite clear how important it is to accumulate the know-how on the formulation and manufacturing the friction material. This study concerns the practical ways of conceptualizing the formulation and optimizing the manufacturing process. This study focused on the development of formulation for non-asbestos friction material as well as deriving the physical properties of the trial product to prove its validity and applicability. Elaboration of the formula and optimizing scheme of the manufacturing process to get better quality are also sought. Physical properties were obtained by constant velocity test dynamotest, hardness test and strength test. Differential scanning calorimeter was also used to analyze the thermal reactions of organic constituents, microstructures, bond effects, and degree of mixture.

A Study on the Evaluation of Physical Properties of Polymer-based Composite Materials for the Brake of the Automobile (자동차 브레이크용 고분자복합재료의 물리적 특성평가에 관한 연구)

  • 손태관;김윤해;김봉식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.7-14
    • /
    • 1996
  • The rapid expansion for the auto-industry and the worldwide trend toward non-asbestos friction materials for brake lining force our industry to transfer into non-asbestos ones from asbestos-based friction materials. Furthermore, it is imperative for the friction materials to have technological excellence and lower production cost to be competitive in the world market. There is no known theoretical procedures to formulate friction materials. It, rather, depends on the trial and error process. Thus, it is quite clear how important it is to accumulate the know-how on the formulation and manufacturing the friction material. This study concerns the practical ways of conceptualizing the formulation and optimizing the manufacturing process. This study focused on the development of formulation for non-asbestos friction material as well as deriving the physical properties of the trial product to prove its validity and applicability. Elaboration of the formula and optimizing scheme of the manufacturing process to get better quality are also sought. Physical properties were obtained by constant velocity test dynamotest, hardness test and strength test. Differential scanning calorimeter was also used to analyze the thermal reactions of organic constituents, microstructures, bond effects, and degree of mixture.

  • PDF

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Cutting Force, Surface Roughness and Suface Phenomenon by Face Milling - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제2보(第2報)) - 정면(正面)밀링 절삭(切削)에 의한 절삭저항(切削抵抗), 표면조도(表面粗度) 및 가공표면상태(加工表面狀態) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 1988
  • Recently the automization of wood manufacturing and the development of CNC machine tools becomes the center of interest. Cutting mechanism, tool wear and the roughness of machined surface have been studied. In the studies about wood for special uses, concrete data of cutting is desired. While Pinus densiflora is characterized that heartwood develops as age increases, Chunyang District has the characteristic of strength, red color, relatively regular chap and high heartwood - percentage. But there is no data about cutting this wood, Chunyang District. In this study face milling by sintered carbide tool was excuted to Chunyang District. Cutting force, Surface roughness and states were investigated with regard to cutting speed. Example results were as follows; 1) Mean cutting resistance against lateral component force and longitudinal component force decreased rapidly up to cutting speed of 155 m/min, and remains constant above this speed. 2) The surface roughness of cutting surface lowered as cutting speed increased, regardless of fiber formation. Radial rougness of fiber is larger than lineal surface roughness. 3) Increase in Cutting speed made machining mark restrained. Down-milling showed larger marks than up-milling.

  • PDF

Mediation effects of social support and self-efficacy between academic stress and college adjustment in physical therapy students (물리치료학과 학생의 학업스트레스와 대학생활적응의 관계에서 사회적 지지와 자아탄력성의 매개효과)

  • Kim, Sangwoo;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.2
    • /
    • pp.48-62
    • /
    • 2020
  • Purpose: The purpose of the study was to identify the mediating effects of social support and self-efficacy between academic stress and college adjustment in physical therapy students. Design: Survey. Methods: 75 subjects were surveyed about the level of academic, Academic Stress, College Adjustment, Social Support, Self-Efficacy, and self-control. To confirm the cognitive function on brain activity were evaluated. Results: First, College students have higher academic stress and lower college adjustment. Higher social support and self-efficacy have lower academic stress and better college adjustment. Second, students with high academic stress need constant attention to increase their social support and programs to reduce academic stress. Third, students with high academic stress, low social support, and low self-efficacy can increase their cognitive strength through the brain wave thereby reducing the academic stress they are currently feeling. Conclusion: In order to improve the College Adjustment, it is considered that it is important to increase the cognitive function through brain train along with the development of a student management program that can reduce academic stress and increase social support and self-efficacy.

Levitation characteristics of HTS tape stacks

  • Pokrovskiy, S.V.;Ermolaev, Y.S.;Rudnev, I.A.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.14-16
    • /
    • 2015
  • Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing $n=2{\div}200$ of tapes $12mm{\times}12mm$ and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.