• Title/Summary/Keyword: strength design method

Search Result 2,593, Processing Time 0.034 seconds

The Effects of Task-Oriented Training for Left Trunk Flexion Pattern Using Real-Time Ultrasound Imaging -A Single-Subject Experimental Study- (편측무시 환자에게 실시간 초음파 영상을 이용한 왼쪽 몸통 굽힘 패턴을 적용한 과제지향적 훈련의 효과 -단일 사례 연구-)

  • Kim, Ji-Seon;Ki, Kyong-Il;Kang, Tae-Woo
    • PNF and Movement
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Purpose: This study investigates the effects of task-oriented training for a left trunk flexion pattern using real-time ultrasound imaging in a stroke patient with unilateral neglect symptoms. Methods: This study used the ABA experimental design, which is a single-subject research method among individual case research methods. For the ABA experimental design, changes in the degree of unilateral neglect, balance ability, and the thickness of the lateral abdominal muscle were visually analyzed during the baseline process, in the intervention period, and after the intervention. The experiments were performed 24 times in total for 8 times in each of the 3 periods. The unilateral neglect was measured using the Albert test, balance ability was measured using the Berg balance test, and the thickness of the lateral abdominal muscle was measured using ultrasound imaging. The subject was a 50-year-old male patient with unilateral neglect caused by right cerebral hemorrhage. He performed task-oriented training for a voluntary left trunk flexion pattern using real-time ultrasound imaging during the intervention period. Results: The result of comparing the data collected during the intervention period with the data point average of the baseline process showed that balance ability improved and the tendency line was above the baseline. The tendency line of unilateral neglect was below the baseline and showed a decreasing tendency. The thickness of the lateral abdominal muscle showed an increasing trend and the tendency line was above the baseline. Conclusion: The results of this study suggest that the task-oriented training for left trunk flexion pattern using real-time ultrasound imaging has a beneficial effect on balance ability, the degree of unilateral neglect, and the strength of the lateral abdominal muscle in unilateral neglect patients.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Analysis on Space and Architecture Examples of Toyo Ito from the Viewpoint of Functionalism - Focusing on Small-Sized Residental Spaces - (기능주의 관점에서의 이토 토요의 공간 및 건축 사례 분석 - 소규모 주거 공간 사례를 중심으로 -)

  • Han, Hyun Suk
    • Design Convergence Study
    • /
    • v.16 no.6
    • /
    • pp.59-74
    • /
    • 2017
  • Louis Sullivan insisted, "Form follows function." Functionality is one of the most fundamental elements for users to use product or space, and "function" in space and architecture has the meaning of the most important factor in determining its form. In this way, from the viewpoint of "Functionalism," the research selected Toyo Ito to see how important elements pursued by Functionalism are related to his forms of creation. Small residential space projects of Toyo Ito from the early 1970s to the present are selected, so that the structure, material and space type of space and architecture can easily grasped and analyzed. Space and architectural structures and surfaces were classified into the characteristics of materials and classified according to the strength of openness of space. As a result, the space and architecture that pursue the function use a method that can maximize the efficiency of the function while excluding the whole decoration in order to highlight the function. The characteristics found in Toyo Ito's small-scale residential space can be defined as the formalization and simplification of the form, the openness of space, and the versatility of each element.

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao;Wei Wang;Chen Xu;Sheraz Abbas;Zhiping Lin
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.659-674
    • /
    • 2024
  • Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall (보강토 옹벽용 지오그리드의 현장 내시공성 및 강도 감소계수 평가에 관한 연구)

  • Park, Juhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.5-12
    • /
    • 2012
  • Recently the installation of reinforced earth retaining walls in the domestic construction site has increased, surpassing conventional RC walls. These reinforced walls have various types depending on the reinforcing material, installation method and the form of face panel. However, there are difficulties in design and construction management due to the unproved safety of construction method. In case of reinforcing materials, despite the fact that they come in all different sizes and types produced by small businesses or partially imported with cheap price and low quality, no proper standards for designing the walls have been suggested. In order to apply reinforced retaining wall system to broad cases and design the walls effectively considering site conditions, specific design and construction guidelines for efficient construction management are needed. In conclusion, this study verified that reduction factors can be greatly affected by grain sizes and stiffness of backfill materials and granularity range, therefore in case of relatively large construction site, it is required to redesign the reinforced retaining wall by evaluating site installation resistance test, applying respective reduction factors to each backfill material and select the right geogrid depending on the usage of retaining wall so as to enhance the safety of reinforced earth retaining walls with efficiency.

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis (확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석)

  • Park, Dohyun;Kim, Hyunwoo;Park, Jung-Wook;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

A Study on Secondary Lining Design of Tunnels Using Ground-Lining Interaction Model (지반-라이닝 상호작용 모델을 이용한 터널 2차라이닝 설계에 관한 연구)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.365-375
    • /
    • 2006
  • The structural analysis for the secondary lining of tunnels is generally performed by a frame analysis model. This model requires a ground loosening load estimated by some empirical methods, but the load is likely to be subjective and too large. The ground load acting on the secondary lining is due to the loss of the supporting function of the first support members such as shotcrete and rockbolts. Therefore, the equilibrium condition of the ground and the first support members should be considered to estimate the ground load acting on the secondary lining. Ground-lining interaction model, shortly GLI model, is developed on the basis of the concept that the secondary lining supports the ground deformation triggered by the loss of the support capacity of the first support members. Accordingly, the GLI model can take into account the ground load reflecting effectively not only the complex ground conditions but the installed conditions of the first support members. The load acting on the secondary lining besides the ground load includes the groundwater pressure and earthquake load. For the structural reinforcement of the secondary lining based on the ultimate strength design method, the factored load and various load combination should be considered. Since the GLI model has difficulty in dealing with the factored load, introduced in this study is the superposition principle in which the section moment and force of the secondary lining estimated for individual loads are multiplied by the load factors. Finally, the design method of the secondary lining using the GLI model is applied to the case of a shallow subway tunnel.

Experimental Study of Frost Heaving using Temperature Controlled Triaxial Cell (투명 온도제어형 삼축셀을 이용한 흙의 동상 실내실험)

  • Ryu, Byung-Hyun;Jin, Hyun-Woo;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.23-31
    • /
    • 2016
  • Nowadays abnormal coldness happens frequently in Korea and frost heaving causes unexpected ground deformation which results in severe problems for structures such as roadway, railroad and cutoff slope. 'Frost heave' as one of the primary phenomenon is considered to be an important factor together with 'adfreeze bond-strength' and 'creep deformation' for structural design process in permafrost area. Therefore, the fundamental study for frost heave has to be preceded for design of geo-structures in cold region. While various experimental apparatuses have been developed, there still exist a certain level of limitation to evaluate the frost-heave characteristics as design parameters. There are no standard testing method and criteria for analyzing frost heaving in Korea because temperature controlled testing apparatuses including a freezing chamber are expensive. In this paper, a new standard freezing and thawing testing apparatus is introduced, which simulates various freezing and thawing conditions in a soil specimen by using a temperature controlled triaxial cell. Frost heaving tests were performed to assess the new testing apparatus and experimental procedure to evaluate frost heaving for soils is proposed.

Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling (폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구)

  • Ryu, Sae-Hee;Park, Jong-Ha;Lee, Sun-Yong;Lee, Jae-Sung;Lee, Jae-Chul;Ahn, Sung-Hoon;Kim, Dae-Keun;Chae, Jae-Hong;Riu, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.