• Title/Summary/Keyword: strength design method

Search Result 2,594, Processing Time 0.03 seconds

Evaluation of Bearing Capacities of Large Size Non-welded Composite Piles by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 대구경 무용접 복합말뚝의 지지거동 분석)

  • Park, Jae-Hyun;Kim, Sung-Ryul;Le, Chi-Hung;Chung, Moon-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.35-41
    • /
    • 2011
  • Recently, as large structures, which should support large design loads have been constructed, the study on the large diameter composite pile becomes necessary. The large diameter composite pile has the diameter over 700mm and consists of two parts of the upper steel pipe pile and the lower PHC pile by a mechanical joint. In this research, to analyze the bearing capacity and the material strength of the composite pile, three dimensional numerical analyses were performed. First, the numerical modeling method was verified by comparing the calculated load-movement curves of the pile with those of the field pile load tests. Then, a total of twelve analyses were performed by varying pile diameter and loading direction for three pile types of PHC, steel pipe and composite piles. The results showed that the vertical and the horizontal load-movement curves of the composite pile were identical with those of the steel pipe pile and the horizontal material strength of the composite pile was 60-80% larger than that of the PHC pile.

Evaluation of Laboratory Performance Characteristics of Fiber-Reinforced Asphalt Concrete (섬유활용 아스팔트 콘크리트의 실험적 공용특성평가)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.61-72
    • /
    • 2002
  • The optimum fiber and asphalt binder contents were decided on the base of the Mashall mix design method. To compare the mechanical characteristics between the conventional(dense-graded 20) and the fiber-reinforced mixtures, indirect tension tests were conducted under three temperatures(5, 20, 60$^{\circ}C$). In particular, the wheel tracking tests were performed to evaluate the rutting resistances of the mixtures. Test results showed that the indirect tensile strength of fiber-reinforced asphalt concrete was higher than that of conventional one. The toughness of fiber-reinforced mixture was 1.27 to 1.97 times higher than that of conventional one, depending upon the temperature. In addition, the results of wheel tracking tests and the retained indirect splitting tension tests conducted at $60^{\circ}C$ revealed that the resistance to permanent deformation of fiber-reinforced mixture was stronger than that of the conventional one.

Study on the Compact MR fluid Brake for the Training and Sporting Equipment for Leg Rehabilitation (하지 재활운동치료 기구에 적용하기 위한 소형 MR 유체 브레이크에 관한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang;Kim, Il-Gyoum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2878-2885
    • /
    • 2012
  • In this study, the training and sporting equipment for leg rehabilitation featuring the MR fluids is proposed. The compact MR fluid brake is designed and manufactured to apply to the rehabilitation training and sporting mechanism. The resistance characteristic of the MR fluid brake is controllable by varying the magnetic field around the fluid. Under consideration of spatial limitation, design parameters which are related with the magnetic strength are determined to maximize to a torque using finite element method. The FE analysis is performed using a commercial code, ANSYS Workbench. The proposed brake device is manufactured, and its field-dependant torque is experimentally evaluated. When the electric current is supplied, the torque of the MR fluid brake is increased and the response is very fast. Depending on the strength of the current supply, torques of the MR fluid brake also increase similar to Bingham property of MR fluid.

Shape Optimization of Ball Valve for High Temperature (고온용 볼 밸브의 형상 최적화)

  • Kim, Nam-Hee;Byeon, Ji-Hoon;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The main purpose of the ball valve ball is to be moved by the rotation of the stem when fully open or completely closed. In this study the heat of the initial model, which used a structure interaction analysis technique, tried to examine the structural safety of the high temperature for the ball valve. In the initial model the stress of the exiting sheet was more than the yield strength. We selected two design shapes with variables of length and thickness for the optimization of the sheet. The Kriging interpolation method was applied to a meta-model-based optimization technique. As a result, it was possible to find a thickness and length for the sheet within the yield strength. This was done by measuring the value of the capacity coefficient of the valve and evaluating the performance of the ball valve.

Applications of Artificial Neural Networks for Using High Performance Concrete (고성능 콘크리트의 활용을 위한 신경망의 적용)

  • Yang, Seung-Il;Yoon, Young-Soo;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.119-129
    • /
    • 2003
  • Concrete and steel are essential structural materials in the construction. But, concrete, different from steel, consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructors. Concrete have two kinds of properties, immediately knowing properties such as slump, air contents and time dependent one like strength. Therefore, concrete mixes depend on experiences of experts. However, at point of time using High Performance Concrete, new method is wanted because of more ingredients like mineral and chemical admixtures and lack of data. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network ate used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength, slump, and air contents are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.

Mixture Proportioning Approach for Low-CO2 Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand (천연모래 치환율에 기반한 저탄소 경량골재 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2016
  • The purpose of this study is to propose a mixture proportioning approach based on the replacement level of natural sand for reducing $CO_2$ emissions from artificial lightweight aggregate concrete(LWAC) production. To assess the effect of natural sand on the reduction of $CO_2$ emissions and compressive strength of LWAC, a total of 379 specimens compiled from different sources were analyzed. Based on the non-linear regression analysis using the database and the previous mixture proportioning method proposed by Yang et al., simple equations were derived to determine the concrete mixture proportioning and the replacement level of natural sand for achieving the targeted performances(compressive strength, initial slump, air content, and $CO_2$ reduction ratio) of concrete. Furthermore, the proposed equations are practically applicable to straightforward determination of the $CO_2$ emissions from the provided mixture proportions of LWAC.

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.

Design and Implementation of Intelligent Wireless Sensor Network Based Home Network System (무선 센서 네트워크 기반의 지능형 홈 네트워크 시스템 설계 및 구현)

  • Shin, Jae-Wook;Yoon, Ba-Da;Kim, Sung-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.465-468
    • /
    • 2007
  • An intelligent home network system using low-power and low-cost sensor nodes was designed and implemented. In Intelligent Home Network System, active home appliances control is composed of RSSI (Received Signal Strength Indicator) based user indoor location tracking, dynamic multi-hop routing, and learning integration remote-control. Through the remote-control learning, home appliances can be controlled in wireless network environment. User location information for intelligent service is calculated using RSSI based Triangle measurement method, and then the received location information is passed to Smoothing Algorithm to reduce error rate. In order to service Intelligent Home Network, moreover, the sensor node is designed to be held by user. The gathered user data is transmitted through dynamic multi-hop routing to server, and real-time user location & environment information are displayed on monitoring program.

  • PDF

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding (1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합)

  • Kang, S.H.;Lim, H.C.;Lee, H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.

The Finite Element Analysis for a Micro Turbine Fabricated by LIGA-like Process (LIGA-like 공정으로 제작된 마이크로 터빈의 유한 요소 해석)

  • Oh, J.;Choi, B.;Kim, N.
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.380-388
    • /
    • 2000
  • The finite element analysis of a micro turbine was made to investigate safety margin of its operating condition for the high aspect ratio nickel micro turbine blades fabricated by conventional LIGA-like method. From our study, we found that the fabricated turbine could not exceed its yield strength even if the pressure difference between inlet and outlet of turbine blade was about 44kPa, and the correlation of friction coefficient and the maximum stress, caused by contact friction between outer diameter of shaft and inner diameter of turbine blade, was somewhat reciprocal. The maximum stress was decreased with the increasing contact friction, when turbine blade was in its state of rotation. By the results of our study, we conclude that it is possible to fabricate metal micro turbine more easily han surface micromachining technology and to operate with no risk of metal structure's damage, which is caused by yield strength, if the operating condition with the design of micro turbine itself are optimized. It is useful to adopt other applications which have the contact problems between a moving part and the fixed one in micro structures.

  • PDF