• Title/Summary/Keyword: strength design method

Search Result 2,594, Processing Time 0.031 seconds

Numerical study of concrete-encased CFST under preload followed by sustained service load

  • Li, Gen;Hou, Chao;Han, Lin-Hai;Shen, Luming
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2020
  • Developed from conventional concrete filled steel tubular (CFST) members, concrete-encased CFST has attracted growing attention in building and bridge practices. In actual construction, the inner CFST is erected prior to the casting of the outer reinforced concrete part to support the construction preload, after which the whole composite member is under sustained service load. The complex loading sequence leads to highly nonlinear material interaction and consequently complicated structural performance. This paper studies the full-range behaviour of concrete-encased CFST columns with initial preload on inner CFST followed by sustained service load over the whole composite section. Validated against the reported data obtained from specifically designed tests, a finite element analysis model is developed to investigate the detailed structural behaviour in terms of ultimate strength, load distribution, material interaction and strain development. Parametric analysis is then carried out to evaluate the impact of significant factors on the structural behaviour of the composite columns. Finally, a simplified design method for estimating the sectional capacity of concrete-encased CFST is proposed, with the combined influences of construction preload and sustained service load being taken into account. The feasibility of the developed method is validated against both the test data and the simulation results.

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

The Effect of Work-site Health Promotion Program on Health Promoting Behavior, Cholesterol, and the Quality of Life of Middle-aged Workers (산업장 건강증진프로그램이 중년기 근로자의 건강증진행위, 콜레스테롤치 및 삶의 질에 미치는 영향)

  • Park, Jeong-Sook;Park, Kyung-Min
    • Korean Journal of Adult Nursing
    • /
    • v.14 no.2
    • /
    • pp.194-204
    • /
    • 2002
  • Purpose: This study is aimed at showing the effect of work-site health promotion programs for health promoting behavior, cholesterol, and quality of life of middle-aged workers. Method: Thirty-one middle-aged workers were the experimental group and thirty-one were the control group. The 8-week work-site health promotion program was given to the experimental group. After this, health promoting behavior, cholesterol and quality of life were measured by questionnaires for the experimental and control groups. Health promotion theory, flexibility and muscle strength, aerobic exercise, nutrition, stress management, cancer prevention and early detection, smoking and alcohol problems, and summary lecture were all included in the 8-week work-site health promotion program. Health promoting behavior was measured by Park's HPBS, cholesterol was measured by enzyme method, and quality of life was measured by Ro's QOL. Result: The experimental group showed a higher score of health promoting behavior than the control group. There were no differences on cholesterol and quality of life between the experimental and control groups. Conclusion: It is necessary that nurses provide middle-aged workers with work-site health promotion programs to improve health promoting behavior. It's necessary also to re-study this with the pre-post research design.

  • PDF

A basic study on the prediction of local material behavior of composite bone plate for metaphyseal femur fractures (대퇴골 골 간단 부 골절치료용 복합재료 고정판의 국부적 거동 예측을 위한 기초 연구)

  • Yoo, Seong-Hwan;Son, Dae-Sung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.6-11
    • /
    • 2011
  • This paper presents an estimating method for local property changes and failure prediction of composite materials experiencing large shear deformation during draping process. The bone plate for the metaphyseal femur fracture was chosen to apply the presented method because it has complex geometry. The local property changes due to macro-/microscopic deformations of fabric composites during draping process were evaluated by various tests and the result was applied to predict static/fatigue behaviors of the bone plate. This paper was expected to present useful information on the design of composite structures with complex geometry and their performance evaluation.

Analysis of Practical Dynamic Force of Structure with Inverse Problem (역문제에 의한 구조물의 실동하중 해석)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

Computation of RCS and TES of Curved Objects Using a Curved-Patch Physical Optics Method (곡면패치 물리광학법을 이용한 곡면체의 RCS 및 TES 계산)

  • Sung-Youn Boo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.62-71
    • /
    • 2001
  • Prediction of ship's signature of RCS(Radar Cross Section) and TES(Target Echo Strength) is mostly required in the initial design stage of naval craft, because RCS is directly related to the radar detection while TES to the sonar detection. In this research, a numerical scheme using a curved-patch physical optics method is proposed to evaluate signature of a perfectly reflecting curved object. The scheme is validated by comparing numerical RCS values of circular cylinder, sphere and NACA3317 airfoil with available data. It is also further applied to predict RCS of a surfaced submarine and TES of fully submerged one. Major reflectors of the surfaced or submerged submarine for the various incident angles of radar and sonar waves are investigated as well.

  • PDF

Development of Cultural Products using Quilting Technique - Focused on the colored tread quilting technique - (누비기법을 응용한 문화상품 디자인 개발 연구 - 색실누비기법을 중심으로 -)

  • Oh, Ga-Young;Kim, Jong-Ho
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.10
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this study is to develop cultural products containing Korean beauty with modern sense by applying quilting with dyed threat among Korean traditional quilting works. Quilting with dyed thread using various colored thread expresses curve, straight and oblique lines harmoniously, is mainly used to make household goods such as a pouch, a spectacle case and a quilting pocket and a circular pattern, a cross pattern and a geometric pattern are shown in this kind of quilting. As for sewing method, half backstitch and full backstitch are used, and products made by this method are pouches stuffing pads in cotton or silk and quilting it finely to make patterns with various colored threads of stuffing cotton between linings and spectacle cases, a packet of needles and case of spoon and chopsticks which give various feelings according to arrangement of colors. Design of cultural products by applying the beauty of curves of hanbok, sleave-seam of jeogori, trimming line of dangeui. We expect that various cultural products with Korean traditional beauty and modern convenience will be developed continually by introducing the artistic strength of quilting with dyed thread to practical life.

Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading

  • Dong, Jun;Wang, Shiqi;Lu, Xi
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2006
  • In this paper, the hysteretic behaviors of channel and C-section cold-formed steel members (CFSMs) under cyclic axial loading were simulated with the finite element method. Geometric and material nonlinearities, Bauschinger effect, strain hardening and strength improvement at corner zones were taken into account. Extensive numerical results indicated that, as the width-to-thickness ratio increases, local buckling occurs prematurely. As a result, the hysteretic behavior of the CFSMs degrades and their energy dissipation capability decreases. Due to the presence of lips, the hysteretic behavior of a C-section steel member is superior to that of its corresponding channel section. The intermediate stiffeners in a C-section steel member postpone the occurrence of local buckling and change its shapes, which can greatly improve its hysteretic behavior and energy dissipation capability. Therefore, the CFSMs with a large width-to-thickness ratio can be improved by adding lips and intermediate stiffeners, and can be used more extensively in residential buildings located in seismic areas.

Experimental investigation for failure analysis of steel beams with web openings

  • Morkhade, Samadhan G.;Gupta, Laxmikant M.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.647-656
    • /
    • 2017
  • This paper presents an experimental study on the behaviour of steel beams with different types of web openings. Steel beams with web openings became progressively more accepted as a well-organized structural form in steel construction since their existence. Their complicated design and profiling method provides better flexibility in beam proportioning for strength, depth, size and location of holes. The objective of this study is to carry out the experiments on steel beams with different types of web openings and performed non-linear finite element (FE) analysis of the beams that were considered in the experimental study in order to determine their ultimate load capacity and failure modes for comparison. Ten full scale models of steel beam with web openings have been tested in the experimental investigation. The finite element method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify test results and to investigate the nonlinear behaviour of failure modes such as local buckling, lateral torsional buckling, web-post buckling, shear buckling and Vierendeel bending of beams.

Development of Caliper System for Geometry PIG (지오메트리 피그용 캘리퍼 시스템 개발)

  • Yoo, H.R.;Kim, D.K.;Cho, S.H.;Park, S.H.;Park, S.S.;Park, D.J.;Koo, S.J.;Rho, Y.W.;Park, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.228-234
    • /
    • 2001
  • NTMS(Non-contact Tilted-angle Measuring System) is developed by using the principle that the magnetic field of an anisotropic magnet's inner space is uniform and it's possible to measure the strength of the magnetic field using a linear hall effect sensor. In order to implement the caliper system of the geometry PIG(Pipeline Inspection Gauge) which has high accuracy and proper output voltage of the hall sensor without additional driving module or a signal amplifier, it is necessary to consider the size of the magnet, the inner space and back-yoke and the position of pin-hole in the magnet. So the optimal design method of the caliper system is proposed through analysis of NTMS's magnetic field adopting a FEM(Finite Element Method). The experimental results show that the developed caliper system can be used for the geometry pig with good performances.

  • PDF