• Title/Summary/Keyword: strength dependent stiffness

Search Result 66, Processing Time 0.022 seconds

Effect of Stiffness and Strength Degrading Model on Evaluating the Response Modification Factor (강성 및 강도저하 모델이 반응수정계수 산정에 미치는 영향 평가)

  • 오영훈;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.25-32
    • /
    • 1998
  • Most recent seismic design codes include Response Modification Factor(RMF) for determining equivalent lateral forces. The RMF is used to reduce the linear elastic design spectrum to account for the energy dissipation capacity, overstrength and damping of the structure. In this study the RMF is defined as the ratio of the absolute maximum linear elastic base shear to the absolute maximum nonlinear base shear of a structure subject to the same earthquake accelerogram. This study investigates the effect of hysteretic model, as well as target ductility ratio and natural period on duct based RMF using nonlinear dynamic analyses of the SDOF systems. Special emphasis is given to the effects of the hysteretic characteristics such as strength deterioration and stiffness degradation. Results indicate that RMFs are dependent on ductility, period and hysteretic model.

  • PDF

Stiffness and Strength of Composite Beams in Steel Building Structures Under Lateral Loading (횡하중을 받는 철골구조물에서 합성보의 강성과 강도)

  • 이승준
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.79-88
    • /
    • 1989
  • The behavior of composite beams in steel building structures subjected to lateral loading is studied. Mathematical models for the stiffness of composite beams and the strength at the connections, which are dependent on details of the connections are developed based on the previous experimental results and the results from numerical analyses. Analytical models for the skeleton and hysteresis curves of cantilever composite beams are also presented. A single component model for the composite beam, consisting of elastic beam and the end springs at which all the inelstic deformations within a member are lumped, is implemented into the computer program, DRAIN-2D. And a comparison of analytical results is made with the experimental results.

  • PDF

The Effect of Fusible Interlining on the Appearance related Properties & Mechanical Characteristics of the Lyocell Fabrics(II) (리오셀직물의 심지접착에 따른 외관적 성능 및 역학적 특성(II))

  • 김인영;오수민;송화순
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.7
    • /
    • pp.15-24
    • /
    • 2002
  • In this work, the effect of fusible interlining on the appearance related properties and mechanical characteristics of Lyocell fabric after fusing was investigated. Two different types(20's and 10's) of Lyocell face fabric with six different interlining(by thickness and structure) for earth Lyocell fabric were examined. In order to establish the optimum fusing condition for the different face fabric and interlining, peel strength of each fused fabric was measured, which was dependent on the fusing temperature, pressure, and time. The characteristics related appearance and mechanical characteristics of each fused fabric were determined. The results are as follows: The peel strength was excellent, when the fabric was fused with the force of 3kgf/$textrm{cm}^2$ at $120^{\circ}C$ for 15seconds. Flex stiffness, G, 2HG, 2HG5(shear), B, 2HB(bending) of 100% Lyocell fabric 10's were higher than those of 100% Lyocell 20's. Flex stiffness, crease recovery, G, 2HG, B, 2HB of thicker woven interlining were higher than those of thinner woven interlining. Crease recovery of twill interlining were higher than those of plain interlining. In case of shear and bending properties, however, plain interlining was higher than twill interlining. Flex stiffness, crease recovery, G, 2HG, 2HG5, B, 2HB of nonwoven interlining were higher than those of woven interlining. In case of drapability, however, woven interlining was higher than nonwoven interlining.

Finite element analysis of slender HSS columns strengthened with high modulus composites

  • Shaat, Amr;Fam, Amir
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.19-34
    • /
    • 2007
  • This paper presents results of a non-linear finite element analysis of axially loaded slender hollow structural section (HSS) columns, strengthened using high modulus carbon-fiber reinforced polymer (CFRP) longitudinal sheets. The model was developed and verified against both experimental and other analytical models. Both geometric and material nonlinearities, which are attributed to the column's initial imperfection and plasticity of steel, respectively, are accounted for. Residual stresses have also been modeled. The axial strength in the experimental study was found to be highly dependent on the column's imperfection. Consequently, no specific correlation was established experimentally between strength gain and amount of CFRP. The model predicted the ultimate loads and failure modes quite reasonably and was used to isolate the effects of CFRP strengthening from the columns' imperfections. It was then used in a parametric study to examine columns of different slenderness ratios, imperfections, number of CFRP layers, and level of residual stresses. The study demonstrated the effectiveness of high modulus CFRP in increasing stiffness and strength of slender columns. While the columns' imperfections affect their actual strengths before and after strengthening,the percentage gain in strength is highly dependent on slenderness ratio and CFRP reinforcement ratio, rather than the value of imperfection.

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load (지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석)

  • 오병환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.233-240
    • /
    • 2000
  • Nuclear power plant structures may be exposed to aggressive environmental effects than may cause their strength and stiffness to decrease over their service lives, Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances such evaluations are generally very difficult and remain novel. The assessment of existing RC containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration using time-dependent structural reliability analysis to take earthquake loading uncertainties into account. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory the reliability analysis which can determine the failure probabilities has been established.

  • PDF

Seismic Analysis of RC Piers being repaired/retrofitted (보수.보강된 철근콘크리트 교각의 내진해석)

  • Lee, Do-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.198-201
    • /
    • 2006
  • In order to evaluate the seismic performance of reinforced concrete bridge piers, an inelastic time-dependent element is proposed. The proposed element enables increased characteristics due to structural intervention (i.e., repair and retrofitting) to be accurately reflected to the degraded strength and stiffness of the members. Comparative studies are conducted for reinforced concrete bridge columns being repaired and retrofitted and show good correlation between analytical prediction and experimental results. In addition, a nonlinear time-history analysis of a reinforced concrete bridge under multiple earthquakes confirms the applicability and effectiveness of the present development.

  • PDF

Deformation Based Seismic Design of Asymmetric Wall Structures (변형에 기초한 비대칭 벽식 주초의 내진설계)

  • 홍성걸;조봉호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-53
    • /
    • 2002
  • Current torsional provisions focus n restricting torsional effect of asymmetric wall structures by proportioning strength of wall based on the traditional assumption that stiffness and strength are independent. Recent studies have pointed out that stiffness of structural wall is dependent on the strength. This implies that actual stiffness of walls can be determined only after torsional design is finished and current torsional provisions may result in significant errors. To overcome this shortcoming, this paper proposes deformation based torsional design for asymmetric wall structures. Contrary to the current torsional provisions, deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Main purpose of deformation based torsional design is not to restrict torsional response but to ensure intended torsional mechanism according to the capacity design concept. Because displacement and rotation angle can be used as performance criteria indicating performance level of asymmetric structures, this method can be applied to the performance based seismic design effectively.