• Title/Summary/Keyword: strength degradation

Search Result 1,119, Processing Time 0.026 seconds

Preparation and Physical Properties of Poly(ethylene-co-ethyl acrylate)/Carbon Nanotube Nanocomposites (폴리에틸렌에틸아크릴레이트/카본나노튜브 나노복합체의 제조 및 물성)

  • Kook, Jeong Ho;Jeong, Kwang-Un;Yang, Jong Seok;Park, Dae Hee;Go, Jin Hwan;Nah, Changwoon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • Multi-walled carbon nanotubes (MWCNT)-reinforced poly(ethylene-co-ethyl acrylate) (EEA) nanocomposites were prepared by both melt and solution mixing methods. The mechanical, thermal, and electrical properties were investigated as a function of type and loading of CNT. The tensile strength and modulus increased, while elongation at break decreased with increasing MWCNT content. The hollow-type MWCNT showed an improved tensile strength and elongation at break compared with a conventional MWCNT. The thermal degradation temperature was increased by around $40^{\circ}C$ with increasing the amount of MWCNT. The melt-mixed composites showed the highest volume resistivity. In the case of solution-mixed composites, the conventional MWCNT was estimated to show much lower volume resistivity than that of hollow MWCNT. The number and length of extruded CNT onto the fractured surface increased by both increasing the content of CNT and employing the tensile strain to the sample. The melt-mixed specimens showed much smaller number and shorter length of extruded CNT.

AN IN-VITRO WEAR STUDY OF INDIRECT COMPOSITE RESINS AGAINST HUMAN ENAMEL (법랑질에 의한 수종의 간접복합레진의 마모에 관한 연구)

  • Yi, Hyun-Jeong;Jeon, Young-Chan;Jeong, Chang-Mo;Jeong, Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.611-620
    • /
    • 2007
  • Statement of problem: Second-generation indirect composite resins have been improved flexural strength, compressive strength, hydrolytic degradation resistance, wear resistance compared to first-generation indirect composite resins, but there are still some problems as hydrolysis and low wear resistance. Some manufacturers claim that wear resistance of their materials has been improved, but little independent study has been published on wear properties of these materials and the properties specified in the advertising materials are largely derived from in-house or contracted testing. Purpose: This study was to evaluate the wear of indirect composite resins (SR Adore, Sinfony, Tescera ATL) and gold alloy against the human enamel. Material and method: Extracted human incisors and premolars were sectioned to $2{\times}2{\times}2mm$ cube and embedded in the clear resin and formed conical shaped antagonist to fit the jig of pin-on-disk tribometer. Total 20 antagonists were stored in distilled water. Five disk samples, 24mm in diameter and 1.5mm thick, were made for each of three groups of indirect composite resins and gold alloy group, and polished to #2,000 SiC paper on auto-polishing machine. Disk specimens were tested for wear against enamel antagonists. Wear test were conducted in distilled water using a pin-on-disk tribometer under condition (sliding speed 200rpm contact load 24N, sliding distance 160m). The wear of the enamel was determined by weighing the enamel antagonist before and after test, and the weight was converted to volumes by average density. The wear tracks were analyzed by scanning electron microscopy and surface profilometer to elucidate the wear mechanisms. Statistical analysis of the enamel wear volume, wear track depth and wear tract width of disk specimens were accomplished with one-way ANOVA and the means were compared for significant differences with Scheffe's test. Results: 1. The enamel wear was most in gold alloy, but there were no statistically significant differences among all the groups (P>.05). 2. In indirect composite resin groups, the group to make the most shallow depth of wear tract was Sinfony, followed by Tescera ATL, SR Adoro (P<.05). Gold alloy was shallower than Sinfony, but there was no statistically significant difference between Sinfony and gold alloy (P>.05). 3. The width of wear tract of SR Adore was larger than the other groups (P<.05), and there were no statistically significant differences among the other groups (P>.05). 4. SEM analysis revealed that Sinfony and gold alloy showed less wear scars after test, Tescera ATL showed more wear scars and SR Adore showed the most. Conclusion: Within the limits of this study, Sinfony and gold alloy showed the least wear rates and showed similar wear patterns.

A comparative study of physical properties of $TiO_2$ thin films according to a coating method on orthodontic wires and brackets (교정용 와이어 및 브라켓에 이산화티탄 광촉매 코팅 시 코팅방법에 따른 비교연구)

  • Koh, Eun-Hee;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.36 no.6
    • /
    • pp.451-464
    • /
    • 2006
  • The purpose of this study was to search for an appropriate method of coating $TiO_2$ on orthodontic appliances. $TiO_2$ thin films were deposited on orthodontic wires and brackets using sol-gel, CVD (Chemical Vapor Deposition) and PE-CVD (Plasma Enhanced-CVD) methods. The roughness of $TiO_2$-coated surfaces was investigated via scanning electron microscope (SEM) and adhesive strength of $TiO_2$ thin films was measured by adhesive tape pull test. Methylene blue degradation test was carried out to evaluate the photocatalytic activity of $TiO_2$ and the corrosion resistance of $TiO_2$ thin films against fluoride solution was also analyzed by observing the surfaces of $TiO_2$-coated wires and brackets via SEM after immersion in sodium fluoride solution. Through the comparison of properties and photocatalytic activity of $TiO_2$ thin films according to the coating methods, the following results were obtained. Smoother surfaces of $TiO_2$ thin films were generated by CVD or PE-CVD methods than through the sol-gel method or the control. Adhesive strength of the $TiO_2$ thin films was highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Photocatalytic activity of $TiO_2$ thin films on methylene blue was the highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Corrosion resistance of $TiO_2$ thin films against fluoride solution was stronger in CVD and PE-CVD methods than in the sol-gel method. The results of this study suggest that the CVD or PE-CVD methods is more appropriate than the sol-gel method for $TiO_2$ coating on orthodontic wires and brackets.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments (염분분사환경에서 냉연 304 스테인레스강의 부식거동)

  • Chiang, M.F.;Young, M.C.;Huang, J.Y.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2011
  • Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at $85^{\circ}C$ and $200^{\circ}C$ with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at $85^{\circ}C$ for 2000 hours differed greatly from those at $200^{\circ}C$. The weight loss of NSS specimens was not significant at $85^{\circ}C$ but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at $85^{\circ}C$ and $200^{\circ}C$ are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

A Study on Multiple Bases for Development of Natural Adhesives for Woodcraft using Cellulose Extracts from Wood and their Application Potential - Focused on Salicis radicis cortex, hibiscus, Chinese wild peach resin - (셀룰로오스계 목재 추출 성분을 이용한 목공예용 천연 접착제의 개발 및 적용 가능성에 대한 복합적 기반 연구 - 유근피·황촉규·도교 중심으로 -)

  • Wi, Koang Chul;Oh, Seung Jun;Han, Won Sik;Park, Min Sun
    • Korea Science and Art Forum
    • /
    • v.37 no.5
    • /
    • pp.239-248
    • /
    • 2019
  • This study started from the need to improve one of shortcomings of synthetic PVAc adhesives - potential physical harm and environmental hazards to the workers or their users. As a matter of fact, PVAc adhesives are currently mainly used because of their convenience and economy for the production of woodcrafts. The purpose of this study was to develop natural adhesives through research on natural adhesives in step with the current increase of societal attention to environmental friendliness and rapid surge in their demand in the face of such problems. So, the study attempted research on the bases to develop natural adhesives for woodcraft, using cellulose extracts from wood - natural adhesive material. The findings of the study were as follows. Firstly, natural adhesives showed the improved effect in the field of adhesive strength, a basic physical property by 0.2 - 4 times compared with the existing materials and the study confirmed they had the similar or stable pH value. Besides, they had good reversibility, demonstrating their basic physical property as a natural adhesive for woodcraft. While, their durability to ultraviolet ray degradation also showed an excellent result value being better by 1.5 - 8.5 times than the existing materials. The study expects natural adhesives with improved and better performances compared with the existing materials could be developed, if further research on adhesive strength, antibiosis, conservative property were to continue by developing refinery technology for cellulose extracts from wood and rendering the functionality to them.

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao;Ke Hou;Wenjun Hua;Zehan Shen;Yuliang Chen;Fanwei Meng;Zuen Zheng
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2024
  • The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).