• Title/Summary/Keyword: strength criterion

Search Result 636, Processing Time 0.031 seconds

Evaluation Method of Bonded Strength in Adhesively Bonded Structures of the Aluminum Alloys (알루미늄 합금의 접착구조물에 대한 접착강도의 평가방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.35-44
    • /
    • 1999
  • In a view point of earth environmental protection and social requirement, adhesively bonded structures of aluminum alloys have become to be employed for the purpose of decreasing fuel ratio by weight reduction and to improve performance in various engineering fields such as aircrafts, automobiles, rolling stocks and so on. In spite of such wide applications in adhesively bonded structures of aluminum alloys, the quantitative fracture criterion and evolution method of its bonded strength have not been established yet. The objective of this paper is to establish fracture criterion considering stress singularity at interface edges in adhesively bonded structures of aluminum alloys. Through the analyses of boundary element method and static fracture experiments with three different types of specimens in the adhesively bonded joints of aluminum alloys, its fracture criterion was proposed and discussed about strength evolution of adhesively bonded structures.

  • PDF

Infinite slope stability analysis using Nonlinear shear strength (비선형 전단강도를 이용한 무한사면안정해석)

  • 정진섭;이광범;양재혁
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.556-561
    • /
    • 1999
  • The real strength evvelope for soils without cemetation goes through the origin and is curved. The Mohr -Coulomb failure criterion with the strength parameters c' and ø' from conventional tests overestimates the shear strength available at low normal stresses. The results of laboratory tests interpreted in terms of the Mohr-Coulomb failure criterion are not appropriate for evaluation of surficial slope stability , because the range of effective normal stresses in the field are not used in the laboratory tests.

  • PDF

Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) - (동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) -)

  • ;Mitsuru Ohata;Masahito Mochizuki;;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.

Effects of hip joint strengthening on muscle strength, Y-balance and low extremity injury criterion in athletics (엉덩관절 강화 운동이 운동선수의 근력, 동적자세조절 및 하체 손상 준거에 미치는 영향)

  • Park, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1345-1353
    • /
    • 2021
  • The purpose of this study was to investigate the effects of 6 weeks hip joint strengthen on muscle strength, dynamic posture control and low extremity injury criterion. Twenty athletics were divided into two groups, the exercise group was conducted for three times a week, 60 minutes, and six weeks. The dependent variables of this study were flexibility, muscular strength, dynamic posture control, and lower body injury criterion. The results of this study showed that the flexibility was not significant, but muscle strength was significant difference. The dynamic posture control was significantly effective in the left posterolateral and posteromedial. In addition, total score was significantly exercise effect, and there was no difference between left and right leg length. In conclusion, hip joint strengthen increased muscle strength and dynamic posture control, and decreased the concern of low extremity injury criterion.

GLOBAL AVALANCHE CRITREION FOR THE S-BOXES OF SEED

  • Rhee, Min-Surp;Kim, Wan-Soon;Kim, Yang-Su
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.303-310
    • /
    • 2002
  • The cyryptographic strength of a Feistel cipher depends strongly on the properties of its S-boxes, which are the strict avalanche criterion(SAC), the propagation criterion(PC) and GAC(the global avalanche criterion). In this paper global avalanche characteristics of S-boxes of the SEED are in-vestigated and compared to global avalanche characteristics of S-boxes of S-boxes of the Data Encryption Standard(DES).

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

The Notched Strength and Fracture Criterion in Plain Woven Glass/Epoxy Composites With a Crack (노치부를 가진 Glass/Epoxy 복합재료의 노치강도 평가와 불안정 파괴조건)

  • 김정규;김도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.57-67
    • /
    • 1993
  • The fracture behavior of plain woven glass/epoxy composite plates with a crack is investigated under static tensile loading. It is shown in this paper that the characteristic length associated with the point stress criterion depends on the crack length. To predict the not ched tensile strength, the point stress criterion proposed by Whitney and Nuismer are modified. An excellent agreement is found between the experimental results and the analytical prediction of the modified point stress criterion. The condition of unstable crack growth in the presence of a per-existing flaw(machined notch) is examined by means of the maximum stress intensity factor $K_max$ using maximumload P$_max$. The values of $K_max$ evaluated from energy release rate G$_max$(the compliance me thod) indicate a wide difference. Therefore in regard to anisotropy and heterogeneity of the composite materials studied, the modified shape correction factor f(a/W) is obtained. $K_max$evaluated by the compliance method a little or insignificantly depends on the initial crack length a, the specimen thickness B, the crack angle .theta. and the specimen geometry.

  • PDF

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • Kim, K.T.;Suh, J.;Cho, Y.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.20-28
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test($\tau$/$\sigma$= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio $\tau$/$\sigma$. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

  • PDF

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Strength Parameters of Basalts in Jeju Island according to Rock Failure Criterions (암반의 파괴기준에 따른 제주도 현무암의 강도정수)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.15-27
    • /
    • 2016
  • In this study, a series of triaxial compressive strength tests were conducted for basaltic intact rocks sampled in the northeastern onshore and offshore, southeastern offshore and northwestern offshore of Jeju Island. Hoek-Brown constants $m_i$ were estimated from the results of the triaxial compression tests, and the properties of the Hoek-Brown constants $m_i$ were investigated. In addition, the cohesion and internal friction angle, strength parameters of Mohr-Coulomb failure criterion, obtained from the results of the triaxial compression tests were compared and analyzed with those estimated from Hoek-Brown failure criterion, respectively. As results, it was found that the Hoek-Brown constant $m_i$ is deeply related to the internal friction angle. As the internal friction grows, the Hoek-Brown constant $m_i$ increases exponentially. The cohesions estimated from the Hoek-Brown failure criterion, on average, are approximately 24% higher than those obtained from the Mohr-Coulomb failure criterion. The internal friction angles estimated from the Hoek-Brown failure criterion are similar to those obtained from the Mohr-Coulomb failure criterion.