• Title/Summary/Keyword: strength criteria

Search Result 982, Processing Time 0.027 seconds

Evaluation of Static Strength and Fatigue Strength for Bogie of a Korea High Speed Train Including Eddy Current Brake System (와전류 제동장치를 포함한 한국형 고속전철 대차의 정적강도 및 피로강도 평가)

  • 노규석;이상록;강재윤
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.267-272
    • /
    • 2001
  • A FEM-based analytical approach was used to evaluate the static strength and the fatigue strength of a KHST bogie including eddy current brake system. Calculation was carried out in the fields of linearity and small deformation. The yield strengths were used as criteria for evaluating the static strength and the fatigue limits were used as criteria for evaluating the fatigue strength. The analysis results show that there is not any location that exceeds the allowable criteria.

  • PDF

Suggestion of the New Criteria on the Shear Strength of Rock Joint (새로운 암석 절리면 전단강도식의 제안)

  • 김대영;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.295-302
    • /
    • 2002
  • Shear strength of the rock joint is dependent on the roughness and the compressive strength of the joint surface, normal stress and etc. Roughness of the joint profile is described by JRC suggested by Barton and Choubey (1977). Choice of the JRC value is subjective. A number of studies have been carried out to quantify the JRC. Predicted shear strengths by Barton's Equation using the new quantification method of JRC suggested by Chun and Kim (2001) were compared results of shear tests and new criteria of shear strength which have a better accuracy to predict shear strength was suggested.

  • PDF

A Study on Application of High-Strength Vertical Stiffeners to Plate Girder (판형교에 고강도 수직보강재 적용에 관한 연구)

  • Chang, Kyong-Ho;Kang, Jae-Hoon;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.137-144
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. However, criteria and example for design of high-strength steel are not built up. exiting criteria for structural steels is not proper for economical design of high-strength steel. Moreover, exiting criteria will be decrease the fatigue performance of steel bridge using high-strength steel. Therefore, criterion for application of high-strength steel must be established. In this paper, the behavior of plate girder using high-strength vertical stiffeners was clarified by carrying out layer elastic-plastic finite element analysis using finite deformation theory. In order to optimize the design and construction of plate girder using high-strength vertical stiffener, criterion for application of high-strength vertical stiffener is proposed.

  • PDF

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Nonlinear Strength Parameters and Failure Characteristics of Anisotropy Rock - Shales (혈암의 이방성을 고려한 비선형 강도정수 및 파괴규준식 산정)

  • 김영수;이재호;허노영;방인호;성언수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.713-720
    • /
    • 2000
  • The directional response of strength and deformation on the rocks acting by external loads is called by strength and deformability anisotropy, respectively. Peak strength and its failure criteria of anisotro rocks have been studied and reported. Many authors have investigated in detail the behavior of triaxial peak strength of anisotropic rocks(Jaeger 1960, McLamore & Gray 1967, Hoek & Brown 1980, Ramamurthy & Rao 1985). They concluded that the triaxial strength of anisotropic rocks varies according to the inclination of discontinuity in specimens. And, the minimun triaxial strength occurs in the specmen with 60° of inclination angle ; and specimens with 0° or 90° inclination have maximum triaxial strength. Based on the experimental result, the behavior triaxial strength is investigated. The triaxial compression tests due to the angle bedding plane have been conducted and the material constants, 'm' and 's', cohesion and angle of friction and nonlinear strength parameters to fit for the failure criterion were derived from the regression analysis. And, the experimental date are employed to examine three existing failure criteria for peak strength, provided by Jaeger, McLamore and Hoek & Brown and Ramamurthy & Rao. For a shale, the suitability of the failure criteiria of triaxial peak strength for anisotropic rocks is discussed.

  • PDF

Suggestion of Vibration Criteria for Fresh Concrete Considering Early Strength Increase (Fresh 콘크리트의 초기 강도 증가를 고려한 진동규준치 제안)

  • Park, Sun-Joon;Park, Yeon-Soo;Kang, Sung-Hoo;Kim, Hong-Ki;Kim, Eung-Rok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.453-460
    • /
    • 2002
  • In this paper, vibration criteria for fresh concrete are suggested considering relationship of strength and ages of concrete. Vibration criteria of fresh concrete subjected to construction vibration are not to be certain in abroad countries without question within a country. Before 12 hours cured, vibration criterion is suggested 0.25 cm/s. Used 4.0 cm/s by vibration criterion after 28 days. And the interval extent used relation with strength and ages of concrete. Vibration criteria proposed in this paper are thought may satisfy properties of fresh concrete as well as generally used those in domestic. Also, the actual ground vibrations due to pile driving have been measured, and data are analyze using the nitration equation applying to reliability index.

The Evaluation of Remaining Strength for Corroded Pipeline by Full Scale Burst Test (실제크기 배관의 파열시험을 통한 가스배관의 파괴거동 평가)

  • Kim, Young-Pyo;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.339-344
    • /
    • 2001
  • The transmission pipeline industry spends many millions of dollars annually performing inline inspections, excavating sites of possible corrosion, and repairing or replacing damaged sections of pipe. New criteria for evaluation the integrity of corroded pipe have been developed in recent years to help in controlling these costs. These new criteria vary widely in their estimates of integrity and the most appropriate criterion for a given pipeline is not always clear. This paper presents an overview, comparison and evaluation of acceptability criteria for corrosion defects in pipelines. By full scale burst tests, this paper have assessed the relative accuracy of each of theses criteria in predicting failure and remaining strength. Many of the criteria appear to be excessively conservative and indicate that defects must be repaired when none is needed, based upon burst test data.

  • PDF

The Adequate Slab Thickness Satisfied with the Vertical Floor Vibration Criteria for Several Concrete Compressive Strength (콘크리트 강도에 따른 바닥판 수직진동에 대한 적정 두께 제안)

  • 남상욱;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.659-662
    • /
    • 2003
  • Recently, the floor thickness in residence may not be satisfied with the floor vibration criteria although the thickness is evaluated by the serviceability requirements in current design provisions. Thus it is necessary to develop the procedure to determine slab thickness satisfied with the floor vibration criteria. In this study, We proposed the methods to determine the slab thickness satisfied with the vertical floor vibration criteria for several concrete compressive strength of flat plate floor systems. For this purpose Monte Carlo simulation procedure was adopted and both randomness inherent in young modulus of concrete and heel drop intensity were accounted.

  • PDF

Laminate Tensile Failure Strength Prediction using Stress Failure Criteria

  • Lee, Myoung Keon;Kim, Jae Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.19-25
    • /
    • 2021
  • This paper presents a method that uses the stress failure criteria to predict the tensile failure strength of open-hole laminates with stress concentrations. The composite material used in this study corresponds to a 177 ℃ cured, carbon/epoxy unidirectional tape prepreg. The results obtained by testing ten different laminates were compared and analyzed to verify the tensile strength of the open-hole laminates predicted using the proposed stress failure criteria. The findings of this study confirm that the tensile strength predictions performed using the proposed method are generally accurate, except in cases involving highly soft laminates (10% of 0° ply).

A Study on the Mechanical Characteristic Change Accordance with Surface Damaged Submarine GFRP Repairing (잠수함용 GFRP 표면결함 수리에 따른 기계적 특성변화 연구)

  • Jung, Young In;Koo, Ja Gil;Lee, Yoon Suk
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.257-267
    • /
    • 2020
  • Purpose: The purpose of this study is to define guideline for fiber-glass-resin-putty repairing method for submarine GFRP by comparing structural strength between normal GFRP and putty repaired GFRP. Methods: GFRP specimen tensile and flexural tests are conducted in accordance with ASTM D3039/3039M-17 and ASTM D790 Procedure A. The collected data was analysed whether satisfies its structural strength criteria. Furthermore, It is analysed to find dominant reason of structural strength changes. Results: The result of the study is as follows; flexural strength of GFRP is satisfied strength criteria for all test cases, but tensile strength is not satisfied its criteria for some cases which over 2 mm depth of surface damage. Conclusion: The fiberglass-resin-putty repairing method should be applied to under 2 mm depth of damage which is not affecting to roving fiber layer destruction in GREP laminate.