• Title/Summary/Keyword: strength and stability

Search Result 2,456, Processing Time 0.028 seconds

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

Thermal Stability of the Mechanical and Thermal Conductive Properties on Cu-STS-Cu Clad Metal for LED Package Lead Frame (LED 리드프레임 패키징용 Cu/STS/Cu 클래드 메탈의 기계 및 열전도 특성의 온도 안정성 연구)

  • Kim, Young-Sung;Kim, Il-Gwon
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.77-81
    • /
    • 2013
  • We have investigated thermal stability of the mechanical and thermal conductive properties of Cu/STS/Cu 3 layered clad metal lead frame material for a LED device package at different temperatures ranging from RT to $200^{\circ}C$. The fabricated Cu/STS/Cu clad metal has a good thermal stability for the mechanical tensile strength and thermal conductivity of the over 50 $Kg/mm^2$ to the $150^{\circ}C$ and 270 $W/m{\cdot}K$ to the $200^{\circ}C$, respectively. This clad metal lead frame material at a high temperature of $150^{\circ}C$ shows a reinforced mechanical tensile strength by 1.5 times to conventional pure copper lead frame materials and also a comparable thermal conductivity to typical copper alloy lead frame materials.

Comparing the Effects of Stability Exercise, ESWT, and Taping for Patients with Myofascial Pain Syndrome of Upper Trapezius (안정화 운동, 체외충격파, 테이핑이 상승모근 근막통증 증후군에 미치는 효과 비교)

  • Lee, Jung-Ho;Hwang, Kyung-Ok;Park, Young-Han
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2012
  • Purpose: In this study, the effects of stability exercise, extracorporeal shock wave therapy, and taping on pain and function in patients with myofascial pain syndrome of upper trapezius were compared. Methods: The subjects were divided into the stability exercise, ESWT and the taping treatment group and the clinical outcomes were evaluated by visual analog scale (VAS), pressure pain threshold (PPT) and a constant-murley scale (CMS) at pre-treatment and post-treatment. Paired t-test and ANOVA was used for statistical analysis. Results: All groups were statistical significance in the change in visual analog scale (p<0.05). The difference between the ESWT group and taping group was statistical significance in the change in pressure pain threshold (p<0.05) except for the taping group. Using the constant-murley scale, the stability exercise group showed a significant decrease in pain, and a significant increase in ROM, ADL, strength, total score of shoulder (p<0.05); however, the ESWT group showed no difference on ADL. In addition, there was no difference in strength for the taping group. The comparison of the effect between the stability exercise group, ESWT group and taping group in CMS showed a statistical significant difference in pain, ADL and ROM (p<0.05). Conclusion: These results indicate that stability exercise, ESWT and taping could be considered an effective and efficient treatment modality for myofascial pain syndrome of upper trapezius.

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

An Experimental Study of Precast Concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 압축강도특성을 중심으로 -)

  • Park, Heung-Lee;Ki, Jun-Do;Kim, Sung-Jin;Lee, Hoi-Keun;Park, Byung-Keun;Jung, Jang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, and rationalization of construction are required.large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different strength characteristics. Concerning this, in order to suggest strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between core strength and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

Geotechnical Properties of Sandy Tidal Flat and Stability of Artificial Tidal Flat (모래질 갯벌의 지반공학적 특성 및 인공갯벌의 안정성)

  • 권오순;장인성;이광수;염기대
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.127-137
    • /
    • 2003
  • The researches on the construction of artificial coastal wetlands have been progressed in order to cope with the situation that the area of Korean tidal flat has been reduced due to several coastal developments This study, as a part of the project on construction of the artificial tidal flats, deals with the comparison of the geotechnical characteristics between natural tidal flat and artificial tidal flat, and is also focused on the stability analysis of tidal flats. Various laboratory tests were performed using disturbed and undisturbed samples, which were obtained from a sandy tidal flat in Korea. The stability of the sandy soils accumulated on the tidal flat was investigated by comparing the shear strength of soil evaluated from laboratory test with induced shear stress due to both current and wave action.

Study on Thermal Stability of Ni-P-Fe and Ni-P-B Layers Electroplated on Alloy 600 (Alloy 600에 전기 도금한 Ni-P-Fe 및 Ni-P-B 층의 열적 안정성 연구)

  • Kim, Myong-Jin;Kim, Joung-Soo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • In this study, thermal stability of the mechanical properties of Ni-P-B and Ni-P-Fe layers electroplated on Alloy 600 material was evaluated by measuring their microhardness, tensile strength, and elongation after heat treatment at $325^{\circ}C$ and $400^{\circ}C$. According to the results, there was no noticeable change in microhardness of the two electrodeposits before and after heat treatment at the temperatures for 30 days. In the case of a Ni-P-B electrodeposit, ultimate tensile strength (UTS) slightly increases with heat treatment time, while its elongation decreases, showing good thermal stability in the mechanical properties at high temperature. On the other hand, UTS and elongation of Ni-P-Fe decrease with heat treatment time, which is very unusual observation. This result was attributed to the bad microstructure of Ni-P-Fe having many defects in the deposit formed early stage of an electroplating process and their redistribution to link to become large ones during heat treatment.

Study on the stability of tunnel and rock mass classification in Danyang limestone quarry (단양 석회석 광산터널의 암반 평가 및 안정성 연구)

  • ;Choon Sunwoo;Kong Chang Han;yeon-jun Park
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 1996
  • In-situ survey and laboratory rock test were carried out for rating rock mass around the tunnel that some failures had been occurred in Danyang limestone quarry. For rating rock mass, several methods such as RMR, Q-system, rock strength etc. were applied. The stability analysis on tunnel was evaluated by numerical method FLAC. And The block theory using streographic projection was also applied for stability analysis. The 3-4 major discontinuity sets are distributed in rock mass around tunnel.

  • PDF

Studies on Interaction of Essential Metal Ions with Bioactive Ligands

  • Tewari, Brij Bhushan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.809-812
    • /
    • 2004
  • Complexation reactions of nitrilotriacetate (NTA) and penicillamine with $Cu^{2+}$ and $Co^{2+}$ have been studied in solution phase using paper electrophoresis technique. The stability constants of the complexes Cu(II)-nitrilotriacetate-penicillamine and Co(II)-nitrilotriacetate-penicillamine have been found to be $6.64{\pm}0.03\;and\;5.86{\pm}0.05$ (logarithm stability constant values), respectively at 35$^{\circ}C$ and ionic strength 0.1 M.

Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Wu, Yongjin;He, Jun
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Strength anisotropy is a typical feature of thin-bedded rock masses and their strength will be degraded subjected to water immersion effect. Such effect is crucial for the operation of hydropower plant because the impoundment lifts the water level of upstream reservoir and causes the rock mass of nearby slopes saturated. So far, researches regarding mechanical property of natural thin-bedded rock masses and their strength variation under water immersion based on field test method are rarely reported. This paper focuses on a thin-bedded stratified rock mass and carries out field test to investigate the mechanical property and strength variation characteristics. The field test is highlighted by samples which have a large shear dimension of 0.5 m*0.5 m, representing a more realistic in-situ situation than small size specimen. The test results confirm the anisotropic nature of the concerned rock mass, whose shear strength of host rocks is significantly larger than that of bedding planes. Further, the comparison of shear strength parameters of the thin-bedded rock mass under natural and saturated conditions show that for both host rocks and bedding planes, the decreasing extent of cohesion values are larger than friction values. The quantitative results are then adopted to analyze the influence of reservoir impoundment of a hydropower plant on the surrounding rock mass stability of diversion tunnels which are located in the nearby slope bank. It is evaluated that after reservoir impoundment, the strength degradation induced incremental deformations of surrounding rock mass of diversion tunnels are small and the stresses in lining structure are acceptable. It is therefore concluded that the influences of impoundment are small and the stability of diversion tunnels can be still achieved. The finings regarding field test method and its results, as well as the numerical evaluation conclusions are hoped to provide references for rock projects with similar concerns.