• Title/Summary/Keyword: strength/stress ratio

Search Result 1,077, Processing Time 0.027 seconds

Evaluation of Fatigue Strength of Weld According to Load of Piping materials for Water Supply and Drainage (상.하수도 배관재 용접부의 하중에 따른 피로강도 평가)

  • Park, Keyung-Dong;Ryu, Hyoung-Ju
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.224-225
    • /
    • 2005
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. In this study, it was investigated about endurance and fatigue crack propagation rate of according to stress ratio of SMAW commonly using for welding structures in present. Fatigue crack propagation rate(da/dN) of low load(R=0.1) was lower than of high load(R=0.6) for piping weld. And in stage I, ${\Delta}$Kth, the threshold stress intensity factor of the weld under heavy load is higher than under small load. Fatigue life shows more improvement in the weld of stress ratio R=0.l than in the weld of stress ratio R=0.6.

  • PDF

Strength Characteristics of Clay Soil by Preconsolidation Pressure (선행하중(先行荷重)에 의한 점토(粘土)의 강도특성(强度特性))

  • Chon, Yong-Baek;Shin, Young-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • This study consolidation undrain Triaxial Compression Tests using constant confining pressure in clay that receive preconsolidation stress that is different and, void ratio, pore water pressure coefficient, shear strength compare with another thing theory and studied analyzing change relation of elastic modules. The summary of analysis is follows: If preconsolidation stress increases in same confining stress in relation of preconsolidation stress and deviator stress, deviator stress is proportional and increased. Can know that excess void pressure is proportional and decreases in size of preconsolidation stress in same confining stress state if preconsolidation stress increases preconsolidation stress and relation of excess void pressure. Also, over consolidated state can assume that this is thing by Dilatancy's effect though excess void pressure decreased remarkably. Preconsolidation stress and relation of stress path can know that shear strength degree increases preconsolidation stress increases, and specially, preconsolidation stress was appear in stress path form of overconsolidated state case of clay that receive at 300, 400, 500kPa in 100, 150kPa's deviator stress.

  • PDF

Hydraulic fracture initiation pressure of anisotropic shale gas reservoirs

  • Zhu, Haiyan;Guo, Jianchun;Zhao, Xing;Lu, Qianli;Luo, Bo;Feng, Yong-Cun
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.403-430
    • /
    • 2014
  • Shale gas formations exhibit strong mechanical and strength anisotropies. Thus, it is necessary to study the effect of anisotropy on the hydraulic fracture initiation pressure. The calculation model for the in-situ stress of the bedding formation is improved according to the effective stress theory. An analytical model of the stresses around wellbore in shale gas reservoirs, in consideration of stratum dip direction, dip angle, and in-situ stress azimuth, has been built. Besides, this work established a calculation model for the stress around the perforation holes. In combination with the tensile failure criterion, a prediction model for the hydraulic fracture initiation pressure in the shale gas reservoirs is put forward. The error between the prediction result and the measured value for the shale gas reservoir in the southern Sichuan Province is only 3.5%. Specifically, effects of factors including elasticity modulus, Poisson's ratio, in-situ stress ratio, tensile strength, perforation angle (the angle between perforation direction and the maximum principal stress) of anisotropic formations on hydraulic fracture initiation pressure have been investigated. The perforation angle has the largest effect on the fracture initiation pressure, followed by the in-situ stress ratio, ratio of tensile strength to pore pressure, and the anisotropy ratio of elasticity moduli as the last. The effect of the anisotropy ratio of the Poisson's ratio on the fracture initiation pressure can be ignored. This study provides a reference for the hydraulic fracturing design in shale gas wells.

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • 정태형;문창기;하영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.92-97
    • /
    • 2004
  • The aim of this study is to estimate the strength of injection molded plastic stepped gear. We considered stepped gear as plate model which are fixed by two edges. While, on the other sides are free. Normal gear is calculated by Lewis formula which can be derived quite simply from the equation for the stress at the root of a cantilever beam. Stress ratio(step factor) is represented for the ratio of the bending stress of normal and the bending stress of stepped gear, and it is plotted by face width factor. This study is propose the step factor added in Dupont equation which are strength estimation of step gear

  • PDF

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • Chong, Tae-Hyong;Moon, Chang-Ki;Ha, Young-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

Engineering Properties of Some Sedimentary Rocks from the Gyeongsang Supergroup (경상계(慶尙系) 퇴적암(堆積岩)의 공학적(工學的) 성질(性質)에 관(關)한 연구(硏究))

  • So, Chil-Sup;Choi, Byoung-Ryol
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 1975
  • The engineering properties of some Gyeongsang sedimentary rocks with respect to the grain size and the orientation of bedding planes were studied. The suitability of the rocks for civil and architectural construction was also investigated. The porosity of the rocks increases in proportion to the grain size. The ratio of the strain due to stress perpendicular to the bedding planes to the strain resulting from stress parallel to the bedding planes increases as the grain size decreases. The study indicates however, that the ratio of Young's modulus due to stress perpendicular to the bedding planes to Young's modulus resulting from stress parallel to the bedding planes increases in proportion to the grain size. The compressive strength of the sandstones studied is much greater than the strength of the conglomerate or shale. Only the coarse grained sandstone can be used for civil and architectural construction, regardless of the orientation of bedding planes. The relationships between compressive strength and density, elasticity and porosity, and compressive strength and mineral content were also studied.

  • PDF

Compressive Strength Properties and Freezing and Thawing Resistance of CSG Materials (CSG 재료의 압축강도 특성 및 동결융해 저항성)

  • Yeon, Kyu-Seok;Kim, Young-Ik;Hyun, Sang-Hoon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the unconfined compressive strength properties and freezing and thawing resistance of CSG materials with unit cement content. The three types of CSG-80, CSG-100 and CSG-120 with cement content were designed to evaluate the optimum water content, dry density, strength, stress-strain, micro structure and durability factor. As the results, the optimum water content ratio with cement content showed almost similar tendency, and the unconfined compressive strength and dry density increased as cement content increases. The strength ratio of 7 days for 28 days were in the range of 55~61 % and the strain ratio in stress-strain curve were in the range of 0.8~1.6 % nearby maximum strength in 28 days. It is expected that this study will contribute to increasing application of CSG method as well as to increasing the utilizing of CSG materials as a environmentally friendly CSG method.

Consideration of FEM Analysis and Effect of Structure in Fault Rock (단층의 해석상의 고려사항과 암반구조물에 미치는 영향)

  • Ahn, Sung-Youll
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.160-169
    • /
    • 2007
  • In this study, Analyzed stress history, state of stress, ratio of stress/strength to use FEM. Fault Zone depth is 3m, 6m, 9m, 12m and 15m for study, and also Distance is 3m, 6m, 9m, 12m and 15m at center of tunnel with thickness 3m fault zone. It is not appeared that Arching in stress state and stress history by FEM. On the other hand, excessive shear stress and high compressive stress happened. Therefore, Tunnel design is desirable that do it so that state of stress that is the imbalance may be uplemented. it is important that examine each state of stress and stress history in detail tunnel design.

  • PDF

Response of lap splice of reinforcing bars confined by FRP wrapping: modeling approach

  • Thai, Dam Xuan;Pimanmas, Amorn
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.95-110
    • /
    • 2011
  • This paper presents a tri-uniform bond stress model for predicting the lap splice strength of reinforcing bar at the critical bond splitting failure. The proposed bond distribution model consists of three zones, namely, splitting zone, post-splitting zone and yielding zone. In each zone, the bond stress is assumed to be constant. The models for bond strength in each zone are adopted from previous studies. Combining the equilibrium, strain-slip relation and the bond strength model in each zone, the steel stress-slip model can be derived, which can be used in the nonlinear frame analysis of the column. The proposed model is applied to derive explicit equations for predicting the strength of the lap splice strengthened by fiber reinforced polymer (FRP) in both elastic and post-yield ranges. For design purpose, a procedure to calculate the required FRP thickness and the number of FRP sheets is also presented. A parametric investigation was conducted to study the relation between lap splice strength and lap splice length, number and thickness of FRP sheets and the ratio of concrete cover to bar diameter. The study shows that the lap splice strength can be enhanced by increasing one of these parameters: lap splice length, number or thickness of FRP sheets and concrete cover to bar diameter ratio. Verification of the model has been conducted using experimental data available in literature.

Investigation of residual stresses of hybrid normal and high strength steel (HNHSS) welded box sections

  • Kang, Lan;Wang, Yuqi;Liu, Xinpei;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.489-507
    • /
    • 2019
  • In order to obtain high bearing capacity and good ductility simultaneously, a structural column with hybrid normal and high strength steel (HNHSS) welded box section has been developed. Residual stress is an important factor that can influence the behaviour of a structural member in steel structures. Accordingly, the magnitudes and distributions of residual stresses in HNHSS welded box sections were investigated experimentally using the sectioning method. In this study, the following four box sections were tested: one normal strength steel (NSS) section, one high strength steel (HSS) section, and two HNHSS sections. Based on the experimental data from previous studies and the test results of this study, the effects of the width-to-thickness ratio of plate, yield strength of plate, and the plate thickness of the residual stresses of welded box sections were investigated in detail. A unified residual stress model for NSS, HSS and HNHSS welded box sections was proposed, and the corresponding simplified prediction equations for the maximum tensile residual stress ratio (${\sigma}_{rt}/f_y$) and average compressive residual stress ratio (${\sigma}_{rc}/f_y$) in the model were quantitatively established. The predicted magnitudes and distributions of residual stresses for four tested sections in this study by using the proposed residual stress model were compared with the experimental results, and the feasibility of this proposed model was shown to be in good agreement.