• Title/Summary/Keyword: strength, surface roughness

Search Result 540, Processing Time 0.035 seconds

Improving the Dyeability of Cotton Fabric with Caesalpinia sappan through Pretreatment with Gelatin (면직물의 젤라틴 전처리에 의한 소목염색의 염색성 향상)

  • Lee, Ji Youn;Jang, Jeong Dae
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.509-514
    • /
    • 2019
  • Cotton fabrics were treated with gelatin to enhance dyeability and color strength when using Caesalpinia sappan dye. Gelatin was used as the protein and a pad-dry- cure method was used for the treatment process (2, 4, 6, 8, 10, 12, 14g/l concentration). Pretreated fabrics were mordanted with 10% alum. Fabrics were then dyed with freeze-dried sappan wood water extract powder form. Dyed samples were assessed in regards to dyeing behavior and color fastness. Comparing untreated and gelatin treated samples from the SEM images indicated that the Gelatin treatment (10g/l) resulted in an enhanced surface roughness that was relative to that of untreated cotton. Padding cotton with gelatin at 6g/l concentration afforded dyed fabrics with a 2 times increase in the K/S value over that of untreated fabrics. All dyed samples were red color with a significant enhancement in the sample color strength (K/S) being observed for pretreated samples. pH values favor dye absorption with pH 7 yielding the highest color strength. Dyeing at an elevated temperature resulted in a lower color strength and reddish-dull color. Longer dyeing times created greater color strengths for untreated and gelatin treated cotton. Increased dye concentrations resulted in higher K/S values for both gelatin treated and untreated cotton. As for color fastness, gelatin treated and untreated cotton fabrics dyed with sappan wood extract showed a relatively low rating in washing fastness (color change 1 rating), light fastness (1 rating), and rubbing fastness (wet:1-2, dry:3-4 rating).

Experimental Debonding Failure Behaviors of Composite Skin-Stiffener Bonded Specimens (복합재료 스킨-보강재 접합 시편의 파손 특성에 대한 시험 연구)

  • Kim, Kwang-Soo;An, Jae-Mo;Jang, Young-Soon;Yi, Yeong-Moo
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.8-14
    • /
    • 2007
  • Debonding failure characteristics of the composite skin-stiffener specimens were experimentally investigated. The influences of bonding methods, types of stiffener shape and various secondary bonding parameters were evaluated. Present test results combined with the previous test results[1] showed that the failure displacement of the skin-stiffener specimens well evaluates the skin-stiffener debonding failure strength of the composite stiffened panels. The specimens with an open type stiffener had lower bending stiffness and larger failure displacement than those with a closed type stiffener. Secondary bonding and co-curing with adhesive had better failure strength than co-curing without adhesive film. Secondary bonded specimens failed by adhesive failure and co-cured specimens failed by delamination failure. As the bondline thickness was thinner, the skin-stiffener specimens had higher failure strength. The fillets had no influence on failure strength of the specimens. The influence of the surface roughness was shown according to types of stiffener shape.

A Study for Adfreeze Bond Strength Developed between Weathered Granite Soils and Aluminum Plate (동결된 화강풍화토와 알루미늄판 접촉면에서 발현되는 동착강도 측정 연구)

  • Lee, Joonyong;Kim, Youngseok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.23-30
    • /
    • 2013
  • Bearing capacity of pile is governed by only skin friction in frozen ground condition, while it is generally governed both by skin friction and end bearing capacity in typically unfrozen ground condition. Skin friction force, which arises from the interaction between pile and frozen soils, is defined as adfreeze bond strength, and adfreeze bond strength is one of the most important key parameters for design of pile in frozen soils. Many studies have been carried out in order to analyze adfreeze bond strength characteristics over the last fifty years. However, many studies for adfreeze bond strength have been conducted with limited circumstances, since adfreeze bond strength is sensitively affected by various influence factors such as intrinsic material properties, pile surface roughness, and externally imposed testing conditions. In this study, direct shear test is carried out inside of large-scaled freezing chamber in order to analyze the adfreeze bond strength characteristics with varying freezing temperature and normal stress. Also, the relationship between adfreeze bond strength and shear strength of the frozen soil obtained from previous study was analyzed. The coefficient of adfreeze bond strength was evaluated in order to predict adfreeze bond strength based on shear strength, and coefficients suggested from this and previous studies were compared.

Dependence of the Diamond Coating Adhesion on the Microstructure of WC-Co Substrates (WC-Co계 미세조직에 따른 CVD 다이아몬드 코팅막의 접착력 변화)

  • Lee, Dong-Beum;Chae, Ki-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.728-734
    • /
    • 2004
  • The effect of microstructure of WC-Co substrates which have different WC grain sizes from submicron to 5 $\mu$m on the diamond-substrate adhesion strength was investigated. The substrates were pre-treated by two methods : chemical etching with Murakami's solution and subsequently with $H_2SO_4$, and thermal heat-treatment. The adhesion strength was estimated by degree of peeling after Rockwell indentation. Diamond films of 20 $\mu$m thickness deposited on the heat-treated substrates showed an excellent adhesion strength at the load of 100 kg, which ascribed to the large and elongated WC grains. However, the cutting edge of insert was deformed after heat treatment and the surface morphology of heat treated substrate strongly affected on the surface roughness of the deposited diamond films. On the contrary, the diamond film of 10 $\mu$m in thickness on the chemically etched substrates of average WC grain size over 2 $\mu$m showed good adhesion strength enough not to peel-off under a load of 60 kg. Especially, the substrate of average WC grain size over 5 $\mu$m exhibited much improved reliability of adhesion comparing with the substrate of average grain size under 2 $\mu$m. No substrate deformation was observed in this case after the chemical etching, which is more advantageous and more practical in terms of precious machining than the heat treatment case.

Correlation of Simrad EM950(95kHz) Multibeam Backscatter Strength with Surficial Sediment Properties in the Sand Ridge of the Eastern Yellow Sea (황해 동부 사퇴분포지역의 표층퇴적물 특성과 Simrad EM950(95 kHz)멀티빔 후방산란 음압간 상관관계)

  • Kong, Gee-Soo;Kim, Seong-Pil;Park, Yo-Seop;Min, Gun-Hong;Kim, Ji-Uk;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.719-738
    • /
    • 2006
  • Simrad EM950 multibeam data and surficial sediment grab samples were acquired to correlate backscatter strength with surficial sediment properties in the eastern Yellow Sea which tidal sand ridges are dominantly developed. The study area is divided into the western sand ridge zone characterized by well sorted, fine sandy sediment, and the eastern non-sand ridge zone characterized by poorly sorted, medium sand with some gravels and shell fragments. In spite of minor difference in grain size between two zones, the variations of backscatter strength between two zones are distinct. Multibeam backscatter strength of study area shows good correlation with the grain size of surface sediment as well as the carbonate contents. High occurrence of carbonate shell fragments can increase grain size and bottom roughness. The dominance of higher backscatter strength in the eastern non-sand ridge zone may reflect the effects of coarse grain size and high shell fragments contents.

A Study on Mechanical Properties of Strand/Particle Composites(I) - Effect of Layer Constructions - (스트랜드/파티클 복합체의 기계적 성질에 관한 연구(I) - 단면구성이 기초물성에 미치는 영향 -)

  • Kim, Yu-Jung;Shibusawa, Tatsuya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • To develop the technology of producing structural board from low grade materials, an attempt was made to produce strand/particle composites from split wood strand(S) and particle(P) of (Cryptomeria japonica D. Don), which changed the layer construction and the ratio of S/P. The influence of layer construction on board properties was determined, focusing on the number and alignment of the S layers. The effect of weight ratio of S/P (3:7, 1:1, 7:3) on mechanical properties was also discussed on seven layered panel. Mechanical properties were determined from static bending tests to give parallel and perpendicular modulus of rupture (MOR) and modulus of elasticity (MOE), and the internal bond (IB) strength. In general, the surface strand layers contributed to the MOR and MOE. The parallel MOR and MOE values were the largest for the single layered S panel (only Slayers: S1), but the perpendicular MOR and MOE was the smallest. Perpendicular MOR and MOE were the largest for seven layered composite that had two cross oriented strand layers (SPSPSPS: SP7). Specimens retained more than half of their MOE and MOR after two hours in boiling water and one hour soaking. IB was the largest for the panel having only P layers, however, differences in IB strength were not identified among the other multi-layered composite panels thus the effect of layer construction on IB strength was small. Thickness swelling (TS) and surface roughness were smaller for the composite having P layers on the surface than for those having S layers. The addition of strands did not enhance the mechanical properties (MOR, MOE, IB). TS values for the panels, with which the S/P ratio was over than 1:1, was the similar to the value for the single layered S panels.

  • PDF

Uplift Capacity of a Diaphragm Wall Installed in Ground with High Groundwater Table (높은 지하수위 지반 속에 설치된 지중연속벽의 인발저항력)

  • Hong, Won-Pyo;Chim, Neatha
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.5-17
    • /
    • 2014
  • A series of model tests were conducted in order to observe the failure surface generated around a diaphragm wall embedded in ground with high groundwater table. Images of the soil deformation around the model wall were captured during the test. The configuration of the failure surface in soil around the model wall could be obtained from analyzing the image of the soil deformation. Based on the configuration of the failure surface observed in the model test, an analytical approach was proposed to predict the uplift capacity of a diaphragm wall installed in ground. The analytical approach considers not only the wall properties such as length, thickness and surface roughness of diaphragm walls but also the soil strength properties such as the internal friction angle and the cohesion of soil. The predicted uplift capacity of a diaphragm wall shows a good agreement with the experimental one measured in the model test.

Mechanical Properties of VARTM Processed Abaca Fabric Composites (VARTM 공정으로 성형된 Abaca 패브릭 복합재의 기계적 특성평가)

  • Byun, Gill Jae;Ha, Jong-Rok;Kim, Byung-Sun;Joe, Chee Ryong;Ok, Ju Seon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.198-204
    • /
    • 2012
  • The objective of this study is to improve the mechanical properties in abaca fabric/epoxy composites produced using a VARTM process. The mechanical properties were improved by increasing the surface roughness of the fabric through plasma polymerization and improving the interfacial adhesion between the epoxy and the fabric through changing its hydrophilic properties to the hydrophobic properties. Plasma polymerization at atmospheric pressure and room temperature was used, and the optimal polymerization time to improve the mechanical properties was investigated. NaOH treatment on the fabric was also carried out for the comparison. The composite fabricated using the fabric polymerized for 10 seconds shows the highest tensile strength compared to that of none-polymerized or NaOH treated. Plasma polymerization for more than 20 seconds exhibits decrease in the tensile strength. As a result, the plasma polymerization for more than 20 seconds may have caused some damages on the surface of the fabrics. Also, the hydrophilic abaca represents a tendency of presenting the hydrophobic properties in absorption and sedimentation tests.

Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure (동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구)

  • Ko, Sung-Gyu;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.67-76
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. Adfreeze bond strength is considered to be the most important design parameter for foundations in cold region. Many studies in last 50 years have been conducted to analyze characteristics of adfreeze bond strength. However, most studies have been performed under constant temperature and normal stress conditions in order to analyze affecting factors like soil type, pile material, loading speed, etc. In this study, both freezing temperature and normal stress acting on pile surface were considered to be primary factors affecting adfreeze bond strength, while other factors such as soil type, pile material and loading speed were predefined. Direct shear box was used to measure adfreeze bond strength between Joomoonjin sand and aluminium because it is easy to work for various roughness. Test was performed with temperatures of > $0^{\circ}C$, $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$ and vertical confining pressures of 1atm, 2atm, and 3atm. Based on the test results, the effects of temperature and vertical stress on adfreeze bond strength were analyzed. The test results showed that adfreeze bond strength increases with decreased temperature and increased vertical stress. It was also noted that two types of distinct sections exist, owing to the rate of increase of adfreeze bond strength along the change of freezing temperature: 1)rapidly increasing section and 2)gradually decreasing section. In addition, the results showed that a main factor affecting adfreeze bond strength switches from friction angle to adhesion as freezing temperature decreases.

A study on the shear bond strength between Co-Cr denture base and relining materials (금속의치상과 의치이장재료 간의 결합력에 관한 연구)

  • Lee, Na-Young;Kim, Doo-Yong;Lee, Young-Soo;Park, Won-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Purpose: This study evaluated the bonding strength of direct relining resin to Co-Cr denture base material according to surface treatment and immersion time. Materials and methods: In this study, Co-Cr alloy was used in hexagon shape. Each specimen was cut in flat surface, and sandblasted with $110\;{\mu}m$ $Al_2O_3$ for 1 minute. 54 specimens were divided into 3 groups; group A-control group, group B-applied with surface primer A, group C-applied with surface primer B. Self curing direct resin was used for this study. Each group was subdivided into another 3 groups according to the immersion time. After the wetting storage, shear bond strength of the specimens were measured with universal testing machine. The data were analyzed using two-way analysis of variance and Tukey post hoc method. Results: In experiment of sandblasting specimens, surface roughness of the alloy was the highest after 1 minute sandblasting. In experiment of testing shear bond strength, bonding strength was lowered on group B, C, A. There were significant differences between 3 groups. According to period, Bonding strength was the highest on 0 week storage group, and the weakest on 2 week storage group. But there were no significant differences between 3 periods. According to group and period, bonding strength of all group were lowered according to immersion time but there were no significant differences on group B and group C, but there was significant difference according to immersion time on group A. Conclusion: It is useful to sandblast and adopt metal primers when relining Co-Cr metal base dentures in chair-side.