• Title/Summary/Keyword: strength, surface roughness

Search Result 540, Processing Time 0.027 seconds

A Study on The Glass-Ceramics Containing Fluorine (불소 함유 결정화유리에 관한 연구)

  • 박용완;현부성;김창렬
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.815-821
    • /
    • 1992
  • The batches having excess SiO2 to tetrasilicic mica KMg2.5 (Si4O10)F2 were melted at 1450℃. The fabricated samples were heat-treated for the nucleation and the crystallization. The crystallized samples were investigated on several properties. The tetrasilicic mica composition with excess 10 wt% SiO2 was successful both in glassifying and in crystallizing. The optimum temperatures for the nucleation and the crystallization were 680℃ and 1000-1100℃, respectively. The mica and the cristobalite crystallines were identified after heat-treatment. The properties of the samples processed appropriately were as follows, bulk density 2.64g/㎤, thermal expansion coefficient ∼80×10-7/℃, Vicker's hardness ∼105 Kgf/㎟, bending strength ∼666Kgf/㎟, dielectric constant ∼11.1, tan δ 2.5%, volume resistivity 2.35×107∼1.3×1011{{{{ OMEGA }}cm, surface roughness 6.984㎛.

  • PDF

Structural and Electrical Properties of Bismuth Magnesium Niobate Thin Films deposited at Various Temperatures

  • Park, Jong-Hyun;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.153-156
    • /
    • 2007
  • Structural and electrical properties of the fully crystallized-bismuth magnesium niobate ($Bi_2Mg_{2/3}Nb_{4/3}O_7$, BMN) films with 15 mol% excess bismuth deposited on Pt bottom electrode by pulsed laser deposition are characterized for various deposition temperatures. The BMN films were crystallized with a monoclinic structure from $300^{\circ}C$ and the surface roughness slightly decreases with increasing deposition temperature. The capacitance density of the films increases with increasing deposition temperature and especially, films deposited at $400^{\circ}C$ exhibit a capacitance density of approximately $620nF/cm^2$. The crystallized BMN films with approximately 170 nm thickness exhibit breakdown strength above 600 kV/cm (${\leq}10V$) irrespective of deposition temperature and a leakage current density of approximately $2{\times}10^{-8}A/cm^2$ at 590kV/cm (at 10 V).

The Study on the Application of CNT Particle in High-Precision Magnetic Abrasive Polishing Process (초정밀 자기연마 공정에 탄소나노튜브 입자의 적용에 관한 연구)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.274-279
    • /
    • 2011
  • In this study, new abrasives that were composed of iron powder and carbon nanotube (CNT) particle were attempted to be abrasives for magnetic abrasive polishing. Because the CNT particles itself are very small ones with high hardness and magnetic strength, these properties are effective for magnetic abrasive polishing of nonmagnetic materials. As an experimental result for evaluating the machining characteristics in magnetic abrasive polishing, the CNT particles showed better performance than the conventional abrasives such as Fe and CBN powder.

A Benchmark Study on the Stereo-lithography-type Rapid Prototyping Apparatus using Transparent Materials (투명 재료를 사용하는 광조형 방식 쾌속조형 장비의 성능 비교 시험)

  • Kim, Gi-Dae;Sung, Joo-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.138-145
    • /
    • 2007
  • Among various rapid prototyping processes, stereo-lithography process which can manufacture transparent prototype is known to be the greatest in the form & dimensional accuracy and surface roughness. In this paper, bench mark tests of 4 stereo-lithography-type rapid prototyping apparatus were carried out using transparent materials. The test includes measurement of mechanical properties, form accuracy, building speed and manufacturing cost. It was observed that ViperPRO of 3D systems is advantageous in the mechanical properties and building speed, RM600011 of CMET in sub-milli scale form accuracy and manufacturing cost, and relatively economical Eden500V of Objet is great in tensile strength at room temperature.

Dimensional Accuracies of Cold-Forged Spur Gears (냉간단조 스퍼어기어의 치수정밀도)

  • 이정환;이영선;박종진
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.115-121
    • /
    • 1996
  • Recently it is attempted to manufacture gears by various cold forging methods to meet requirements of mass production and uniform qualities. Compared to machined gears cold forged ears reveal higher tooth strength and better surface roughness but they reveal lower geometrical accuracies. Therefore in the present study a series of experiments are performed to investigate relations between geometrical accuracies of dies and billet and those of the final product. The geometrical accuracies of forged gears are considered through functional gear-element tolerances by measuring pitch error profile error lead error radial error tooth thickness and rolling test. Results of the experiments can be summarized as follows: (1) involute spur gears of KS 5(or AGMA7) accuracies can be made,(2) concentricity of die set should be maintained within 0.01mm (3) clearance between the billet and die set should be less than 0.1mm (4) con-centricity and radial runout should be less than 0.08mm and 0.1mm respectively. However it is thought that FEM analysis of elastic/thermal deformations of dies and the billet is necessary for a better understanding of the findings obtained through the present study.

  • PDF

Machinability of Carbon Fiber Epoxy Composites in Turning (선삭가공에 있어서 탄소섬유 에폭시 복합재료의 절삭 특성)

  • Kim, Gi-Soo;Lee, Dai-Gil;Kwak, Yoon-Keun;Nam-Gung, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.63-73
    • /
    • 1991
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability of the carbon fiber epoxy composite materials in turning was experimentally investigated. The cutting mechanism and the Taylor Tool Wear constants were determined and the surface roughness was measured w.r.t. cutting speeds and feed rates.

  • PDF

Grinding Characteristic of Advanced Ceramics (파인세라믹의 연삭가공특성)

  • Jung, Yoon-Gyo;Kang, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 1990
  • Advanced ceramics have some excellent properities as the material for the mechanical component. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, some experiments are carried out to find the basic grinding characteristic of advanced ceramics. Representative advanced ceramics, such as AL/sub 2/ O/sub 3/, ZrO/sub 2/, SiC and Si/sub 3/N/sub 4/and ground with diamond wheels. Special attention is paid to comparison between the conventional and creep feed grinding. Results obtained in this study provide some useful informations to attain the high efficiency grinding of advanced ceramics.

  • PDF

Preparation and Properties of Anionic Water-Dispersed Polyurethane Containing Polypropylene Glycol and Casein

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.778-786
    • /
    • 2017
  • In this study, analyzed the changes occurred after adding casein emulsions to water - dispersed polyurethane using polypropylene glycol (PPG). For this purpose, anionic water - dispersed polyurethane containing PPG, IPDI and DMPA and casein emulsion prepared by dissolving casein in distilled water using ammonia water were prepared. As a result of measuring the alkali resistance by using the prepared resin, there was no change in the physical properties. The tensile strength of the sample having a high casein content was measured to be $2.227kgf/mm^2$. Elongation was measured at 474% for samples containing less casein and The abrasion resistance was measured as 46.090 mg.loss of sample containing much casein as a result of the surface roughness measurement.

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.