• Title/Summary/Keyword: strength, surface roughness

Search Result 540, Processing Time 0.029 seconds

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Ana Beatriz Vilela Teixeira;Mariana Lima da Costa Valente;Joao Pedro Nunes Sessa;Bruna Gubitoso;Marco Antonio Schiavon;Andrea Candido dos Reis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.

A Study on the Cutting Characteristics of Inconel 690 alloy (인코넬 합금의 절삭특성에 관한 연구)

  • 황경충
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.315-319
    • /
    • 1999
  • This paper has been considered on the cutting characteristics such as chip formation and surface roughness for Inconel 690 alloy with difficult-to-cut because of high toughness and strength. We have made efforts solving the problem to difficult-to-cut of Inconel by improvement of tool with TiN coating and the selection of optimum cutting condition. We used the CCD camera and the surface roughness tester to observe the chip formation and the state of machined surface by using the improved tool with diamond coating and various cutting condions. We have found that the chip formation showed the tooth shape of tooth blade and the surface roughness was very poor. but it can be better by selection of optimum cutting condition.

  • PDF

Study on Two Step Plasma Treatment for Electroless Cu Plating of Fluoropolymer (불소수지의 무전해 동도금을 위한 단계적 플라즈마 전처리법에 관한 연구)

  • Shin, Seung-Han;Han, Sung-Ho;Kim, Young-Seok
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.3
    • /
    • pp.118-125
    • /
    • 2005
  • Low temperature plasma treatment with different gases and rf powers were performed to improve the adhesion strength between polytetrafluoroethylene(PTFE) and electroless deposited copper. According to the research, $H_2$ plasma having hydrogen radical was more effective in surface polarity modification than $O_2$ plasma due to the defluorination reaction. However, surface roughness of PTFE was more increased with $O_2$ than $H_2$ plasma. PTFE treated with $120W-O_2$ plasma and $250w-H_2$ plasma, consecutively showed rougher surface than single step $250w-H_2$ plasma treated one and more hydrophilic than single step $120W-O_2$ plasma treated one. And it showed 5B tape test grade, which is better adhesion property than 1B or 3B obtained by single step plasma treatment. In addition, adhesion strength between PTFE and Cu deposit is also deeply affected by residual water on its interface.

Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS. RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (${\alpha}$=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (${\alpha}$=.05). The roughness and elemental proportion were evaluated by Kruskal-Wallis test and Mann-Whitney U test. RESULTS. Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION. An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required.

Calendering Effects on the Properties of TiO$_2$ Highly Leaded Paper (캘린더링이 TiO$_2$ 고 충전지의 특성에 미치는 영향)

  • 오세중;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.69-78
    • /
    • 1998
  • Papers loaded with 10-40% $TiO_2$ by dry weight were calendered under the various combinations of calendering conditions such as calender type, linear pressure, and roll temperature. After being calendered, light scattering coefficient, surface roughness, density, and tensile strength of the papers were measured and the results were summerized as follows: 1. To increase the light scattering coefficient of $TiO_2$-highly-loaded paper further by calendering, the calender roll pressure and temperature should be kept low. Under these conditions, the physical strength of the paper was not significantly affected. 2. At low roll temperature, soft nip calender and machine calender type showed the same relationship between paper density and its roughness. At high roll temperature, soft nip calender type gave much lower roughness than machine calender type at the same density. 3. At high roll temperature of both calenders, the density as well as the tensile strength of the TiO$_2$-loaded paper was increased significantly.

  • PDF

Effects of various zirconia surface treatments for roughness on shear bond strength with resin cement (지르코니아의 거칠기 증가를 위한 다양한 표면처리방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Bae, Gang-Ho;Bae, Ji-Hyeon;Huh, Jung-Bo;Choi, Jae-Won
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effects of various zirconia surface treatment methods on shear bond strength with resin cements. Methods: We prepared 120 cylindrical zirconia specimens (⌀10 mm×10 mm) using computer-aided design/computer-aided manufacturing (CAD/CAM). Each specimen was randomly subjected to one of four surface treatment conditions: (1) no treatment (control), (2) airborne-particle abrasion with 50 ㎛ of Al2O3 (A50), (3) airborne-particle abrasion with 125 ㎛ of Al2O3 (A125), and (4) ZrO2 slurry (ZA). Using a polytetrafluoroethylene mold (⌀6 mm×3 mm), we applied three resin cements (Panavia F 2.0, Super-Bond C&B, and Variolink N) to each specimen. The shear bond strength tests were performed in a universal testing machine. The surfaces of representative specimens of each group were evaluated under scanning electron microscope. We used one-way analysis of variance (ANOVA), two-way ANOVA, and post hoc Tukey honest significant difference test to analyze the data. Results: In the surface treatment method, the A50 group showed the highest bond strength, followed by A125, ZA, and control groups; however, no significant difference was observed between A50 and A125, A125 and ZA, and ZA and control (p>0.05). Among the resin cements, Super-Bond C&B showed the highest shear bond strength, followed by Panavia F 2.0 and Variolink N (p<0.05). Conclusion: Within the limitations of this study, application of airborne-particle abrasion and ZrO2 slurry improved the shear bond strength of resin cement on zirconia.

Form grinding characteristics of Sr ferrite (Sr 페라이트의 총형연삭특성)

  • 김성청;이재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.21-27
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions in form grinding of Sr-ferrite with the electro-plated diamond wheel. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the best at the peripheral wheel speed of 1700 m/min. (2) In the case of the depth of cut larger than 0.4mm, crack layers is induced in the ground surface, and the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) Whe the depth of cut exceeds 0.6mm, the wheel life becomes extremely severe due to the large chipping and brack- age in the diamond grains. However, at the depth of cut .leq. 0.05mm, the diamond grain shows abrasive wear. (4) The decrease of flexural strength and the increase of surface roughness is in proportion to the increase of the feed rate. (5) Most effective nozzle setting angles with various delivery conditions of the grinding fluid, such as nozzle position .PHI. , flow rate Q, etc., were made clear.

  • PDF

A study on the hexagonal drawing dies for the high strength materials (고강도 육각 이형 인발 다이스에 관한 연구)

  • 권혁홍;유동진;이정로;이원복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1410-1413
    • /
    • 2003
  • Drawing is a basic plastic deformation method and productive manufacturing process make wire. rod and variety section geometry bar. Study for the rod drawing process of rod was researched long littles. but non-axisymmetric drawing process is weak. So metal flow is very irregular in non-axisymmetric drawing process and difficult to define about material deformation generally. In this paper, to solve material deformation, use finite element method and then define suitable shape for rod to hexagonal drawing dies. And research corner filling rate and surface roughness for the high strength steel hexagonal bar produced defined dies.

  • PDF

Optimum Grinding Condition for Electroplated Diamond Wheel in Form Grinding of Ferrite (페리이트의 총형 연삭에서 전착 다이아몬드 연삭숫돌의 최적 연삭조건)

  • 김성청;이재우;김관우;한상욱;황선희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.29-33
    • /
    • 1996
  • This paper aims to clatify the potimum grinding condition for the electroplated diamond wheel in form grinding of Sr-ferrite. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the highest at the peripheral wheel speed of 1700m/min. (2) In the case of depth of cut larger than 0.4mm, crack layers is induced in the ground surface, the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) When the depth of cut exceed 0.6mm, the tool life becomes extermely short due to large chipping and brackage. However, at the depth of cut .geq. 0.05mm, the diamond grain shows abrasive wear. (4) The flexural strength and surface roughness increases in proportion to the feed rate.

  • PDF

Characterization of Product Surface according to Tool Surface Conditions when Forming TRIP1180 Steel Sheets with PVD CrN-coated Tools (PVD CrN 코팅 금형의 TRIP1180 판재 성형 시 금형의 표면상태에 따른 제품 표면특성 평가)

  • J. H. Bang;G. H. Bae;M. Kim;M. G. Lee;H. G. Kim;J. H. Song
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.247-254
    • /
    • 2023
  • This study conducted the wear tests on bending punches coated with PVD CrN and examined the surface quality of the product formed by each punch in the forming of uncoated TRIP1180 sheets. The study quantitatively estimated the surface quality of the product by measuring the roughness and imaging the product surface. The correlation between the punch wear depth and the product surface roughness was quantitatively analyzed. The results showed that before failure occurs, the product roughness was comparable with that of the as-received, and the product surface was smooth without scratches and defects. However, after failure, the punch wear is caused by fretting wear mechanism, and a punch whose coating is not completely peeled plows the product surface, resulting in severe scratches with grooves and ridges on the product surface. Severe wear on the punch surface caused by fretting wear can rapidly degrade the product surface quality as it is directly affected by the punch surface condition, and the product surface quality accurately reflects the punch wear condition.