• Title/Summary/Keyword: streamlined closed-box girder

Search Result 1, Processing Time 0.017 seconds

A simplified vortex model for the mechanism of vortex-induced vibrations in a streamlined closed-box girder

  • Hu, Chuanxin;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.309-319
    • /
    • 2021
  • The vortex-drift pattern over a girder surface, actually demonstrating the complex fluid-structure interactions between the structure and surrounding flow, is strongly correlated with the VIVs but has still not been elucidated and may be useful for modeling VIVs. The complex fluid-structure interactions between the structure and surrounding flow are considerably simplified in constructing a vortex model to describe the vortex-drift pattern characterized by the ratio of the vortex-drift velocity to the oncoming flow velocity, considering the aerodynamic work. A spring-suspended sectional model (SSSM) is used to measure the pressure in wind tunnel tests, and the aerodynamic parameters for a typical streamlined closed-box girder are obtained from the spatial distribution of the phase lags between the distributed aerodynamic forces at each pressure point and the vortex-excited forces (VEFs). The results show that the ratio of the vortex-drift velocity to the oncoming flow velocity is inversely proportional to the vibration amplitude in the lock-in region and therefore attributed to the "lock-in" phenomena of the VIVs. Installing spoilers on handrails can destroy the regular vortex-drift pattern along the girder surface and thus suppress vertical VIVs.