A system for regularly appraising the reliability of streamflow data, KORSAS (KOwaco's Regular Streamflow Appraising System) was developed on PC based Windows for hydrological specialists and engineers working in the Korea Water Resources Corporation (KOWACO). The reliability of streamflow rates can be evaluated with KORSAS in various as pects according to the evaluation duration and method. The former being selected as short term (event based) or long term(continus based), and the latter being classified into comparison methods of flow measurement, other stations results, and simulation. Rainfall-runoff models can be used together with KORSAS in order to evaluate the reliability of observed flow data by comparing with simulated flow data. The objective of this study is to develop a systematic methodology in various aspects to evaluate the reliability of streamflow data regularly.
A system for evaluating streamflow data (KORSAS) was developed, and is operated using PC based Windows to help the hydrological observation practitioner's working in Korea Water Resources Corporation (KOWACO). This system has modules including; DB access and data management, flow measurement arranging, H-Q relation deriving, area rainfall calculating, flow calculating, and flow evaluating modules. Evaluation of observed streamflow is accomplished through the following processes. First, hourly streamflow data is calculated from water level data stored in a DB server by applying the rating relationship between water level and flow rates derived from the past flow measurements. Second, hourly areal rainfal data is calculated from point data stored in the DB server by applying Thiessen networks. Third, hydrographs are displayed on a daily, weekly, monthly, or seasonal duration basis, and are compared to hydrographs of reservoir inflow, hydrographs at water level observation stations and hydrographs derived from simulated results using models.
The impact of land cover changes on streamflow of the Akaki catchment will be assessed using Soil and Water Assessment Tool (SWAT) model. The study will analyze the historical land cover changes (1993 to 2016) that have taken place in the catchment and its effect on the streamflow of the study area. Arc GIS will be used to analysis the satellite images obtained from the United States Geological Survey (USGS). To investigate the impact of land cover change on streamflow the model set up will be done using readily available spatial and temporal data, and calibrated against measured discharge. Two third of the data will be used for model calibration (1993?2000) and the remaining one-third for model validation (2001?2004). Model performance will be evaluated by using Nash and Sutcliff efficiency (NS) and coefficient of determination (R2). The calibrated model will be used to assess two land cover change (2002 and 2016) scenarios and its likely impacts of land use changes on the runoff will be quantified. The evaluation of the model response to these changes on streamflow will be presented properly. The study will contribute a lot to understand land use and land cover change on streamflow. This enhances the ability of stakeholder to implement sound policies to minimize undesirable future impacts and management alternatives which have a significant role in future flood control of the study area.
Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.
In this study, four methods for calculation of continuous daily flow was suggested using short-term or partial recording station of streamflow including missing data. Using these methods, standard flows at the outlet of unit/small basins for the management of total maximum daily loads (TMDLs) in Namgang dam basin were estimated from full-period flow duration curve (FDC). Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and maintenance of variance extension types 1 and 2 (MOVE.1, MOVE.2). In these methods, the continuous daily flow was calculated using extension equation based on correlation analysis, after conducting the correlation analysis between historic record of streamflow and long-term recording station (a base station). Finally the best optimal method was selected as the MOVE.2, and the standard flows in the abundant, ordinary, low and drought flow estimated from FDC was evaluated using MOVE.2 in unit/small basins.
Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.
This study was to evaluate the potential climate change impact on watershed hydrological components of evapotranspiration, surface runoff, lateral flow, return flow, and streamflow using Soil and Water Assessment Tool (SWAT). For Yongdam dam watershed (930 $km^2$), the SWAT model was calibrated for five years (2002-2006) and validated for three years (2004-2006) using daily streamflow data at three locations and daily soil moisture data at five locations. The Nash-Sutcliffe model efficiency (NSE) and coefficient of determination ($R^2$) were 0.43-0.67 and 0.48-0.70 for streamflow, and 0.16-0.65 and 0.27-0.76 for soil moisture, respectively. For future evaluation, the HadGEM3-RA climate data by Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios were adopted. The biased future data were corrected using 30 years (1982-2011, baseline period) of ground weather data. The HadGEM3-RA 2080s (2060-2099) temperature and precipitation showed increase of $+4.7^{\circ}C$ and +22.5 %, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, surface runoff, baseflow, and streamflow showed changes of +11.8 %, +36.8 %, +20.5 %, and +29.2 %, respectively. Overall, the future hydrologic results by RCP emission scenarios showed increase patterns due to the overall increase of future temperature and precipitation.
The purpose of this study were to evaluate the effect of best management practices (BMPs) of Haean highland agricultural catchment ($62.8km^2$) under future climate change using SWAT (Soil and Water Assessment Tool). Before future evaluation, the SWAT was setup using 3 years (2009~2011) of observed daily streamflow, suspended solid (SS), total nitrogen (T-N), and total phosphorus (T-P) data at three locations of the catchment. The SWAT was calibrated with average 0.74 Nash and Sutcliffe model efficiency for streamflow, and 0.78, 0.63, and 0.79 determination coefficient ($R^2$) for SS, T-N, and T-P respectively. Under the HadGEM-RA RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios, the future precipitation and maximum temperature showed maximum increases of 8.3 % and $4.2^{\circ}C$ respectively based on the baseline (1981~2005). The future 2040s and 2080s hydrological components of evapotranspiration, soil moisture, and streamflow showed changes of +3.2~+17.2 %, -0.1~-0.7 %, and -9.1~+8.1 % respectively. The future stream water quality of suspended solid (SS), total nitrogen (T-N), and total phosphorus (T-P) showed changes of -5.8~+29.0 %, -4.5~+2.3 %, and +3.7~+17.4 % respectively. The future SS showed wide range according to streamflow from minus to plus range. We can infer that this was from the increase of long-term rainfall variability in 2040s less rainfalls and 2080s much rainfalls. However, the results showed that the T-P was the future target to manage stream water quality even in 2040s period.
The impact on streamflow and groundwater recharge considering future potential climate and land use change was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for a $260.4km^2$ which has been continuously urbanized during the past couple of decades. The model was calibrated and validated with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.8 to 0.7 and 0.7 to 0.5, respectively. The CCCma CGCM2 data by two SRES (Special Report on Emissions Scenarios) climate change scenarios (A2 and B2) of the IPCC (Intergovemmental Panel on Climate Change) were adopted and the future weather data was downscaled by Delta Change Method using 30 years (1977 - 2006, baseline period) weather data. The future land uses were predicted by CA (Cellular Automata)-Markov technique using the time series land use data of Landsat images. The future land uses showed that the forest and paddy area decreased 10.8 % and 6.2 % respectively while the urban area increased 14.2 %. For the future vegetation cover information, a linear regression between monthly NDVI (Normalized Difference Vegetation Index) from NOAA/AVHRR images and monthly mean temperature using five years (1998 - 2002) data was derived for each land use class. The future highest NDVI value was 0.61 while the current highest NDVI value was 0.52. The model results showed that the future predicted runoff ratio ranged from 46 % to 48 % while the present runoff ratio was 59 %. On the other hand, the impact on runoff ratio by land use change showed about 3 % increase comparing with the present land use condition. The streamflow and groundwater recharge was big decrease in the future.
본 연구에서는 인제 지역에 대해 표준강수지수(SPI), 수문학적 가뭄지수(SDI)를 이용한 가뭄 평가를 수행하였다. 가뭄 분석을 위한 기초자료(강우, 유량) 자료 등을 통해서 월별 유량 비율 등을 검토하였고, 인제군 유역 인근의 강수 및 수위/유량 관측소를 활용하여 기상학적 가뭄 및 수문학적 가뭄분석을 진행한 결과 모든 가뭄지수(SPI, SDI)에서 공통적으로 2014년에 발생한 가뭄이 2017년까지 지속되었던 것으로 분석되었다. 지속기간 12개월의 수문기상자료를 활용하여 가뭄지수를 산정하여 분석한 경우, 심한가뭄 지속기간이 24개월 정도 지속되었던 것으로 확인되었으며 따라서 가뭄으로 인한 피해가 극심했을 것으로 평가된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.