• Title/Summary/Keyword: stream water treatment

Search Result 322, Processing Time 0.024 seconds

Water quality management of Doam lake around the pasture area (목장지대 주변에 위치한 도암호의 수질관리)

  • Cho, Jae-Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 1998
  • Doam Lake is located around the pasture area and Yongpyung Resort. Because of the waste load of domestic animals, nutrient concentration of the stream is high. In this study, waste load of Doam Lake watershed is calculated, and QUAL2E model is applied to the upper part of the Songcheon to calculate the input boundary concentration of Doam Lake. And WASP5 model is applied for the water quality modeling of Doam lake. The results indicate that advanced treatment of domestic animal wastes is necessary for the lake water quality management.

  • PDF

Current Status of Drinking Water Treatment and its Countermeasure (국내외 정수처리 기술의 현황)

  • 류재근
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.67-92
    • /
    • 1997
  • Tap water should be shown the complexity of measures neccessary to secure water quality, especially with respect to drinking and bathing. Designated reservoirs Paldang and Daechung as the Special Environment Protection Areas to regulate new pollution sources and to facilitate construction of wastewater treatment facilities. In this country, 91% of total drinking water resource, consist of 66% stream water, 25% dam water, 7% dune flitrate, 1% each of spring and ground water, are from the surface water. The total volume of annual mean water resources due to precipitation. Over 8% of the total resources are class III as shown in the table., eapecially the water quality of downstream of Nakdong and Yeongsan river are getting worse due to continued economic and social development.

  • PDF

A Study on Backwashing of Granular Fiters Used in Water Treatment (정수처리를 위한 여과지의 역세척에 관한 연구)

  • Lee, Jung Taek;Ahn, Jong Ho;Choi, Keun Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.61-72
    • /
    • 1999
  • To obtain the experimental data for design and operation of actual filtration processes, a sand filter and three kinds of dual media filters in pilot-plant scale were operated in this study. We analyzed the effect of filter medium composition on the filter performance and the effects of backwash water flow rates, length of stream line and air flow rate on the filter backwash efficiency. We also compared the efficiencies of the combined air-water backwashing and the water backwashing in dual media filters. As the backwash water flow rates or the length of stream line increased, the final turbidity of backwash water was decreased and the filtration duration time after backwash was increased. In the case of the combined air-water backwashing, the backwash water quantity needed for backwashing the dual media filters could be decreased. The total volume of filtered water for the dual media filters during filter run was over three times larger than that for the sand filter. The dual media filters could be operated at a high filtration rate of 360 m/day.

  • PDF

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

Simulation of 10-day Irrigation Water Quality Using SWAT-QUALKO2 Linkage Model (SWAT-QUALKO2 연계 모형을 이용한 관개기 순별 관개수질 모의)

  • Kim, Ji Hye;Jeong, Han Seok;Kang, Moon Seong;Song, In Hong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.53-63
    • /
    • 2012
  • The objectives of this study were to develop a linked watershed-waterbody modeling system and to assess the impacts of indirect wastewater reuse on irrigation water quality. The Osan stream watershed within Gyeonggi-do of South Korea was selected for this study. The linked modeling system was composed of the SWAT (Soil and water assessment tool) and QUALKO2 models. The SWAT model was calibrated and validated using the stream discharge and water quality data from 2010 to 2011. Runoff and non-point source pollutants from each subbasin and stream discharge from 1980 to 2009 were simulated by the SWAT model and applied to the QUALKO2 model. The QUALKO2 model was calibrated and validated under the conditions of low water and normal discharges, respectively. Finally, The 10-day irrigation water quality from April to September was simulated. The statistical measures of coefficient of determination ($R^2$), reliability index (RI), and efficiency index (EI) were used to evaluate the system performance. The $R^2$, RI and EI values ranged from 0.5 to 1.0, 1.03 to 1.92, and -35.03 to 0.95, respectively. The 10-day irrigation water quality showed the concentrations of BOD and coliform exceeded the water quality guidelines for wastewater reuse. The linked modeling system can be a useful tool to estimate non-point source pollutant loads in watershed and to control the water quality of effluent from a wastewater treatment plant and irrigation water in the downstream waterbody.

Design of GIS based Korean Reach File Supporting Water Quality Modeling (수질모델링 지원을 위한 GIS 기반 한국형 Reach File 설계)

  • Kwon, Moon-Jin;Kim, Kye-Hyun;Lee, Chol-Young
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • Various input data required for water quality modeling have considerable impacts on modeling results and relevant analysis due to the absence of data standardization and lack of data accuracy. With this in mind, this study mainly focused on the designing Korean Reach File for more effective water quality modeling through the supply of database composed with accurate hydraulic and hydrologic data. The Korean Reach File is the hydraulic database with the locational information of individual reaches, and each reach represents the stream reach of homogeneous hydraulic characteristics. In detail, it has reach code designating each stream reach, and topological information including catalog unit, segment, marker and index. It was also designed considering linkage of existing codes such as stream name and stream code. The devised reach code was implemented to Kyungan River at the City of Gwangju of Kyunggi Province and the results showed that the reach code could effectively support the input database integrating basic numerous data required for water quality modeling based on a criterion as well as easier linkage and utilization with existing database. In addition, more systematic water quality management was enabled through the linkage of existing data such as treatment facilities, pollutant data, and management institutes using the reach codes defined for each stream section. In the future, more efforts need to be made to adopt the reach code as the national standard data thereby enabling utilization of numerous relevant database through the assigning of reach code to individual stream reaches nationwide.

Fundamental Study on the Wastewater Reuses for Agriculture (하수처리수의 농업용수 재이용에 관한 기초 연구)

  • Kang, Moon-Seong;Park, Seung-Woo;Kim, Sang-Min
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.393-396
    • /
    • 2002
  • The objectives of the paper are to develop the infra-technologies for reclaiming the effluents from wastewater treatment plants and reusing for agriculture water. The Suwon wastewater treatment plant has been selected for wastewater reuse tests and the water quality and treatment efficiencies are investigated. Three levels of wastewater treatments that are the effluent from the plant, sand filtering, and ultra-violet treatment are applied in the pilot system. The randomized block method was applied to wastewater application to paddy rice with five treatments, three blocks, and two replica. The control was the plots with groundwater irrigation, the other treatments are to use polluted stream flow by pumping, in addition to three wastewater treatments. The block test plots and field plots have been monitored for the water quality, soil pollution, and health hazards during the crop stages.

  • PDF

A Survey of Cryptosporidium Oocysts in Water Supplies during a 10-Year Period (2000-2009) in Seoul

  • Lee, Mok-Young;Cho, Eun-Joo;Lee, Jin-Hyo;Han, Sun-Hee;Park, Yong-Sang
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.219-224
    • /
    • 2010
  • This study has been conducted to estimate the occurrence of Cryptosporidium oocysts in water supplies in the Metropolitan area of Seoul, South Korea, for 10 years from 2000 to 2009. Water samples were collected quarterly at 6 intakes in the Han River and its largest stream and 6 conventional Water Treatment Plants (WTPs) serving drinking water for 10 million people of Seoul. Cryptosporidium oocysts were found in 22.5% of intake water samples and arithmetic mean was 0.65 oocysts/10 L (range 0-22 oocysts/10 L). Although the annual mean of oocyst number was as low as 0.04-1.90 oocysts/10 L, 3 peaks in 2004 and 2007 were observed and the pollution level was a little higher in winter. The lowest density was observed at Paldang intake and the pollution level increased at Kuui and Jayang intakes. At the end of the largest stream, oocysts were found in 70% of collected samples (mean 5.71 oocysts/10 L) and it seemed that its joining the Han River resulted in the increase at Kuui intake and downstream. Oocyst removal by physical process exceeded 2.0-2.3 log and then all finished water samples collected at 6 WTPs were negative for Cryptosporidium in each 100 L sample for 10 years. These results suggested that domestic wastewater from the urban region could be a source of Cryptosporidium pollution and separating sewage systems adjacent to the intakes could be meaningful for some intakes having weakness related to parasitological water quality.

Chemically Enhanced Primary Treatment at D Wastewater Treatment Plant (화학적 처리에 의한 1차 하수처리장의 처리효과 개선 -현장시험을 중심으로-)

  • Kwak, Jong W.;Kim, Seung H.;Lee, Chan W.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.99-108
    • /
    • 1997
  • This study examined the feasbility of upgrading D waste water treatment plant which treats incoming wastewater by primary sedimentation only. By adding 20-40 ppm of Hi-PAX into the outlet of the aerated grit chamber, BOD and SS removal efficiences were improved from 29% and 36% to 53 % and 73%,respectively. However, chemically enhanced primary treatment failed to meet the upcoming wastewater quality standard(BOD and SS <20 mg/l) consistently. This was suspected to result from the deteriorated plant return stream. The wastewater treatment by chemical treatment should have increased the amount of the sludge to be removed as the sludge production was increased. Chemically enhanced primary treatment is anticipated to consistently produce effluent of the 1996 standards quality by adjusting the amount of the sludge to be removed. Besides BOD and SS removal, chemically enhanced primary treatment resulted in the improved T-P removal from 30% to 64-74%. However, such benefit was not observed in T-N removal. Improved T-P removal will be expected to help control water pollution in Masan bay.

  • PDF

Evaluation of Impaired Waterbody and Multivariate Analysis Using Time Series Load Curve -in Jiseok Stream Watershed- (시계열 부하 곡선을 이용한 수체손상 평가 및 다변량 분석 -지석천 유역을 대상으로-)

  • Park, Jinhwan;Kang, Taewoo;Han, Sungwook;Baek, Seunggwon;Kang, Taegu;Yoo, Jechul;Kim, Youngsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, pollutant emission characteristics by water damage period analyzed 11 items (water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and flow) with load duration curve, time series load curve and factor analysis for three years (2014-2016). Load duration curve is applied to judge the level of impaired waterbody and estimate impaired level by pollutants such as BOD and T-P in this study depending on variation of stream flow. Water quality standard exceeded the flow of mid-range and low-range by flow condition evaluation using load duration curve. This watershed was influenced by point source more than non-point source. Cumulative excess rate of BOD and T-P kept water quality standard for all seasons (spring, summer, autumn and winter) except BOD 59% in spring. Water quality changes were influenced by pollutants of basic environmental treatment facilities and agricultural areas during spring and summer. Results of factor analysis were classified commonly first factor (BOD, COD, and TOC) and second factor (flow, water temperature and SS). Therefore, effects of artificial pollutants and maintenance water must be controlled seasonally and reduced relative to water damage caused by point pollution sources with effluent standard strengthened in the target watershed.