• Title/Summary/Keyword: stream water treatment

Search Result 322, Processing Time 0.03 seconds

Water Pollution Source Tracing Using FDC and Correlation Analysis in Geumho River Basin (FDC 및 상관관계 분석을 이용한 금호강 유역에서의 오염원추적)

  • Park, Kyung Ok;Lee, Chang Hee;Cha, Il Geun
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.232-243
    • /
    • 2016
  • In order to establish the watershed water quality management strategy of Total Maximum Daily Load(TMDL), it is necessary to understand the relationship between water quality component impacts, and to identify the impacts on downstream target point of watershed water quality management of waste treatment plant(WTP) discharge and upstream/tributary loads. In this study, we determined the impacts between the water quality contaminants, and traced water pollution sources using monitoring data of ministry of environment in tributaries and main stream and WTP monitoring data. Test area is set to Geumho river basin which has characteristics of urban and rural area and composes of GeumhoA, GeumhoB, GeumhoC watershed units in TMDL. The clustering with five grades of discharge data and the correlation analysis were performed through the FDC(Flow duration curve) analysis, which more clearly identified the points and water contaminants deteriorating target water quality of downstream point. This can be used as a tool for tracing pollutants with FDC analysis, and will help us establish the watershed water quality management strategy for TMDL target point in watershed more effectively.

Treatment Efficiency of a Subsurface-Flow Wetland System Constructed on Floodplain (고수부지를 이용한 여과습지의 수질정화 초기처리)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.56-63
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a subsurface-flow constructed wetland system (23 m in length, 6.5 m in width, 0.65 m in depth) over one year after its establishment on floodplain of a stream in June 2000. An upper layer of 10 cm in depth was filled with course sand and the main biological layer of 50 cm depth with crushed stone with 8 - 15 mm in diameter. The system was planted with common reeds (Phragmites australis) grown on pots. Effluent discharged from a secondary-level treatment plant was funneled into it. Reed stems emerging in April 2001 grew up to 145.9cm until July 2001. The number of reed stems in July 2001 increased by about 11 times compared with that just after planting. The system was inundated seven times by storms over the monitoring period. Reeds were slightly bent after flooding, however they returned to almost upright standing in a couple of weeks. Small portion of inside slope of berm was eroded and the system surface had a sedimentation of 2 - 3 mm in depth. The average removal rates for SS, $BOD_5$, T-N and T-P was 73%, 70%, 53%, and 72%, respectively. The purification efficiencies for SS and $BOD_5$ were fairly good. The reduction rates for T-N was relatively low for the period of late fall through winter until early spring due to lower water temperature which retarded microbial nitrification and denitrification mechanisms. Reduction in the concentration of T-P during fall and winter was relatively higher than that during spring. Leach of phosphorous from plant litters lying on system surface and slight resuspension of precipitated phosphorous in substrates resulted in lower reduction for T-P in spring.

  • PDF

Total Phosphorus Removal in Cattail Wetland Purifying Effluent from a Night Soil Treatment Plant during Its Initial Operation (분뇨처리장 방류수를 정화하는 부들습지의 초기운영 단계에서 총인의 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • Total phosphorus(TP) removal was examined in a surface-flow wetland constructed in April 2003 during its initial operating stage from June to November 2003. Its dimensions were 87mL by 14mW. It was a part of a four-wetland-cell treatment system constructed near the Kohung Estuarine Lake located in the southern part of Korea. Effluent from a night soil treatment plant was discharged into the wetland and purified effluent from the wetland was discharged into Sinyang Stream flowing into the Lake. Cattails(Typha angustifolia ) from natural wetlands were cut at about 40 cm height and transplanted into the wetland. An average of 25.0$m^3$/day of effluent flowed from the plant into the wetland. Water depth was maintained about 0.2m and hydraulic detention time was about 5.2 days. Average heights of the cattail stems in June and October 2003 were 47.2 and 164.6cm, respectively. The average number of stems was 10.2 stems/$m^2$ in June 2003 and 18.8 stems/$m^2$ in October 2003. Average temperature of influent and effluent ranged 23.4 and $24.2^{\circ}C$, respectively. The average TP concentrations of influent and effluent were about 1.31, 0.50mg/L, respectively. TP loading rate of influent into the wetland averaged 26.81mg/$m^2$, day and average TP loading rate of effluent was 10.04mg/$m^2$, day. Monthly average TP removal by the wetland during the warm growing season of cattails(June to September) ranged 16.28~19.57mg/$m^2$, day and during the cold senescent period (October to November) ranged 12.62~13.90mg/$m^2$, day. TP removal in the wetland continued during the cold winter months and was primarily done by sedimentation and precipitation of phosphorus rather than phosphorus absorption by cattails and microorganisms.

New High Recovery Membrane Modules for Desalination

  • Fujiwara, Nobuya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.1-12
    • /
    • 2002
  • Desalination by reverse osmosis (RO), which first entered commercial use in the 1970s, was initially mainly used for treating brackish water. Technological progress led to the development of an RO membrane enabling single-pass seawater desalination. Toyobo succeeded in developing a single-pass seawater desalination RO module composed of hollow fiber type membranes made of cellulose triacetate in 1978, and then in 1979 began production of the first commercially available double-element module. This double-element module has many advantages suitable for seawater desalination. It has high chlorine tolerance and high salt rejection, derived from the properties of the membrane material, and it is highly resistant to fouling and scaling matters due to the unique flow pattern and fiber bundle configuration. These advantages help to explain why the Toyobo double-element module has been used so successfully at the many seawater desalination plants around the world. Since the 1980s, large plants capable of desalinating several tens of thousands of cubic meters a day have sprung up around the Mediterranean and In the Middle East. The Jeddah RO Phase I Plant, which has a capacity of 56, 800m$^3$/day, went into operation in 1989. In 1994, the same sized Phase II Plant came on stream, giving the plant a huge total capacity of 113, 600m$^3$/day. The plant constructor Mitsubishi Heavy Industries, Ltd. (MHI), and the RO membrane manufacturer Toyobo Co., Ltd. In 1998, the world's largest RO seawater desalination plant in operation, which has a capacity of 128, 000m$^3$/day and is run by Saudi Arabia's Saline Water Conversion Corporation (SWCC), went into operation at Yanbu. RO seawater desalination technology has thus already reached the stage of full-scale commercial use. In order to encourage its wider use, however, RO desalination needs to be made more economical by lowering construction and water treatment costs. Toyobo has therefore developed a new economical RO desalination system by a recovery ratio of 60% using a high-pressure module with a high product flow rate. In 2000, Toyobo high recovery membrane module was selected for the largest seawater desalination plant in Japan, which has a capacity of 50, 000m$^3$/day.

  • PDF

Study on design indicator for wood structure of forest engineering works in Japan(1) - Focus on use and characteristic of wood, investigation and planning - (일본에 있어서 산림토목 목제구조물 설계지침에 관한 연구(1) - 목재의 이용과 특성, 조사 및 계획을 중심으로 -)

  • Chun, Kun-Woo;Kim, Min-Sik;Kim, Youn-Jin;Yoem, Kyu-Jin;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2006
  • The design instruction put in the wood structure construction manual of forest engineering works issued in Japan in 2004 is composed of the introduction, the use and characteristic of wood, investigation, planning, design, and etc. of wood structures. We analyzed the introduction, the use and characteristic of wood, investigation and planning for wood structures. By the results. the contents on the characteristic of wood are shown about physical and chemical properties of wood, the environmental influence, psychological and physiological effects, and rot of wood. The investigation items include the effective degree by flow and insolation, white ant's genital existence, flow conditions of surface water and ground water, situations of flora and fauna to live in mountain stream, the condition of water use, and etc. Also, the contents for the planning are explained for the structure, installation features. treatments, use of wood and lumber in the regions, preservative treatment, and etc.

  • PDF

Enclosure Experiments on the Effects of Various Plants on Algae (경안천 현장실험조에서 식물체를 이용한 조류 증식억제)

  • Lim, Byung-Jin;Jheong, Weon-Hwa;Jun, Sun-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.304-310
    • /
    • 2000
  • Enclosure experiments to reduce the growth of Cyanophyceae were carried out using plants in Kyongan stream. Wet plants put into the enclosure at a rate of 2.5 g wet wt/l and at that time, the average concentration of chlorophyll a was ranged from 30 to $50\;{\mu}g/l$. The dominant species was Microcystis aeruginosa. Ginkgo, big cone pine and pine needles significantly inhibited the growth of Microcystis from the early days to the stages of log-Phase. Waterchestnut was the most inhibitory to the growth of Microcystis. Pine needles inhibited in 85% of the algal growth: ginkgo in 80%; big cone pine in 75%; waterchestnut in 78%; wildrice in 59%; and iris in 30%. At the treatment with 0.25 g dried plants/l, algae was declined at a rate of 90% by waterchestnut: 53% by pine needles. Phenolic compounds were purifled from decomposing big cone pine and waterchestnut.

  • PDF

Effects of Sludge Pre-Treatment on the Excess Sludge Production in a Membrane-Coupled Bioreactor (막결합형 생물반응조에서 슬러지 전처리가 잉여슬러지 발생량에 미치는 영향)

  • Lee, Kang-Hoon;Kim, Ju-Hyun;Nguyen, Hai;Yeom, Ick-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.565-572
    • /
    • 2011
  • The effects of chemical pretreatments on the excess sludge production in the membrane-coupled bioreactor were investigated. In addition, their effects on membrane fouling were also evaluated. Two membrane bioreactors were operated. In one reactor, a part of the mixed liquor was t reated with NaOH and ozone gas consecutively and was returned to the reactor. T he f lowrate of the chemical pretreatment stream was 1.5% of the influent flowrate. During the 200days of operation, the MLSS level in the bioreactor with mixed liquor pretreatment was maintained relatively constant at the range of 8,000 ~ 10,000$mg/{\ell}$ while it increased steadily up to 26,000 $mg/{\ell}$ in the absence of the pretreatment. Each reactor was equipped with two laboratory membrane modules where the flux for each module was 20, and 30 ${\ell}/m^2{\cdot}h$, respectively. With pretreatment, almost constant transmembrane pressure(TMP) was observed throughout the operation at the flux of 20 ${\ell}/m^2{\cdot}h$. Without pretreatment the membrane module at the same flux could also be operated at relatively stable condition. However, as the MLSS increases up to 25,000 $mg/{\ell}$, a fast TMP increase was observed. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality. In addition, it was shown that stable operation in terms of TMP is possible with sludge pretreatment and recirculation.

Analysis of water quality changes in the mainstream and major tributaries of the Youngsan River by AR6 climate change scenario with SWAT (SWAT을 이용한 AR6 기후변화 시나리오에 의한 영산강 및 주요 지천 수질 변화 분석)

  • Lee, Seungmoon;Lee, Eojin;Lee, Jihyung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.741-755
    • /
    • 2024
  • This study was conducted to predict and analyze water quality changes due to climate change using the SWAT (Soil and Water Assessment Tool) model for the main stream and major tributaries of the Yeongsan River Basin. To enhance the reliability of the model, input data was constructed using weather and flow data provided by the government from 2007 to 2021, and the model was calibrated. The mid-emission scenario (SSP2-4.5) and extreme emission scenario (SSP5-8.5), derived using the WRF climate change model from the 6th IPCC report, were applied to SWAT to predict flow and nutrient loads. The water quality changes under future climate change scenarios were analyzed by categorizing them into short-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100) periods. Water quality assessments were conducted based on the Living Environment Standards and the Real-Time Water Quality Index (RTWQI). As a result, in most areas of the Yeongsan River Basin, the concentration of TN was found to be at or above the "Poor" level, with the "Very Poor" level being predominant, especially in the main stream and downstream areas. While the concentration of TP showed some variation depending on the scenario, it exhibited a trend of improvement over the long term. The RTWQI assessment generally showed higher water quality levels compared to the evaluation based on living environment standards, with a trend of water quality improvement over time. This suggests that the concentration of TN can act as a major problem as agricultural regions are the main areas in water quality management in the Yeongsan River basin. Therefore, in order to improve water quality according to future climate change, it is expected that it is necessary to further reduce point and non-point sources such as agricultural non-point source reduction management such as fertilizer management and conservation agriculture, and improvement of roof greening and sewage treatment plants in urban areas.

Estimation of Water Quality Improvement Benefit Using Replacement Cost Approach (대체비용법을 이용한 하천 수질개선편익 산정)

  • Yeo, Kyu-Dong;Yi, Choong-Sung;Kim, Gil-Ho;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.343-353
    • /
    • 2009
  • The objective of this study is to evaluate the effect of the water quality improvement by water discharge through dams and to provide a benefit estimation methodology, taking domestic situation into consideration, by the replacement cost approach analyzed with a sewage treatment plant instead of an alternative dam. To this end, facility that alternates a dam must have same functions of the discharged water from the dam and the two facilities must be able to be compared objectively. To estimate the benefit, estimation methodology of alternative facility's cost is established and criteria of cost.benefit analysis that are duration period and ratio of large scale repairing expense was presented. As a case study, the water quality improvement benefit of Song-Li-Won dam was evaluated, which is planned to be built on Nae-Sung stream in Nak-Dong River system. The results of applying this methodology to Song-Li-Won dam are 644,006 million won of the annual average discharge and 1,351,526 million won of maximum discharge. The usage of the framework in this study is expected for estimation of water quality improvement benefit in case water quality improvement project is performed.

Detection of Perfluorinated Compounds (PFCs) in Nakdong River Basin (낙동강 수계에서의 과불화 화합물(PFCs) 검출 특성)

  • Son, Hee-Jong;Hwang, Young-Do;Yoom, Hoon-Sik;Choi, Jin-Taek;Kwon, Ki-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.84-93
    • /
    • 2013
  • The aims of this study were to investigate and confirm the occurrence and distribution patterns of perfluorinated compounds (PFCs) in Nakdong River basin (mainstream and its tributaries). 7 (PFOS, PFHpA, PFOA, PFNA, PFDA, PFUnDA and PFDoDA) out of 11 PFCs were detected in 29 sampling sites and PFOA and PFHpA were predominant compounds in upstream, but PFUnDA, PFDoDA and PFOS were predominant compounds in middle stream of Nakdong River basin. The total concentration levels of PFCs on February 2009 and on August 2009 in surface water samples ranged from 4.3. to 1168.2 ng/L and 16.4 to 627.8 ng/L, respectively. The highest concentration level of PFCs in the mainstream and tributaries in Nakdong River were Goryeong and Jincheon-cheon, respectively. The sewage treatment plants (STPs) along the river affect the PFCs levels in river and the PFCs levels decreased with downstream because of dilution effects.