• Title/Summary/Keyword: stream water treatment

Search Result 322, Processing Time 0.024 seconds

Application of Biological Activated Carbon Process for Water Quality Improvement of Stagnant Stream Channels

  • Lee, Jae-Ho;Park, Jeung-Jin;Park, Tae-Joo;Byun, Im-Gyu
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • The water quality improvement of golf course ponds, as representative stagnant stream channels, was evaluated by applying a biological activated carbon (BAC) process composed of four consecutive activated carbon reactors. The study was performed from autumn to winter in order to evaluate the feasibility of the BAC process under low temperature conditions. In the study, water quality of pond A (target pond) and pond B (reference pond) were monitored. Pond water was pumped into the BAC process, and was then returned to the pond after treatment. The optimal conditions were determined to be 2 hr of empty bed contact time (EBCT) at a temperature above $4^{\circ}C$, in which improvements of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) of pond A compared to pond B were 3.62%, 3.48% and 1.81%, respectively. On the other hand, as the temperature was below $4^{\circ}C$, some degree of water quality improvement was achieved even when EBCT were 1 or 0.5 hr, suggesting that the BAC process can be successfully applied for the improvement of pond water quality in winter months. The values of biomass concentration and microorganism activity in each condition were highest where 2 hr of EBCT was applied at a temperature above $4^{\circ}C$, but values were similar throughout all treatment conditions, and thus, adsorption is considered to be the dominant factor affecting process efficiency. From the denaturing gel gradient electrophoresis (DGGE) results, no significant differences were observed among the activated carbon reactors, suggesting that the number of reactors in the system could be decreased for a more compact application of the system.

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

Hydrogeological Characteristics of Groundwater in Small Watershed of the Nakdong River Basin (낙동강 하류 소유역의 지하수와 하천수의 수리지질학적 특성)

  • Sieun Kim;SeongYeon Jung;MoonSu Kim;Youn-Tae Kim;Yong-Hoon Cha;Chung-Mo Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.72-84
    • /
    • 2024
  • Recently, the vulnerability of water resources has been increasing owing to climate change, highlighting the importance of groundwater. In particular, the Nakdong River Basin, located in the southern part of Korea, experiences frequent water scarcity phenomena, such as droughts. This study analyzed the hydrogeological characteristics of the study area by examining groundwater and stream water in the Gwangrye Stream, downstream of the Nakdong River Basin, in August and October 2023. Therefore, we collected samples from 54 groundwater wells and five streams for water quality analysis. The results of the field tests indicated an increasing trend in electrical conductivity from upstream to downstream in the study area. Laboratory analyses confirmed that the concentration of Na increased from upstream to downstream more than that of Ca. In conclusion, both stream water and groundwater were influenced by anthropogenic contamination. These changes were closely related to land use in the study area. The upstream areas are primarily composed of forests, whereas the downstream areas are composed of industrial complexes, wastewater treatment facilities, and agricultural areas, which are likely to affect both stream water and groundwater.

Study on performance improved design of pressure-type ozone contactor in multistorey water treatment plant by CFD (CFD에 의한 수직형 정수처리 실증시설 내 압력식 오존접촉조 성능개선에 관한 연구)

  • Choi, Jong-Woong;Kim, Seong-Su;Kim, Jeong-Hyun;Kim, Kwanyeop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.431-440
    • /
    • 2014
  • The ozonation process has been widely used for drinking water disinfection around the world. Recently, the pressurized ozone contactor, in which the side stream typed ozone injection method is installed, has been applied to water treatment system. In this study, numerical calculations were conducted to compare prototype and screw-type ozone contactors based on hydraulic effectiveness in more details. The prototype ozone contactor was already installed and operated in domestic water treatment plant, and the screw-type is the suggested one for improving ozone contact efficiency installing the screw plate to the prototype. Screw turn numbers of screw plate were changed as 3, 5, 7 and 9, respectively for numerical simulation. The CT(concentration of disinfectant in mg/L times time in minutes) value was considered as one of the options for evaluating disinfection ability. From the results, it could be concluded that the performance of the screw-type is higher than that of the protype contactor by controlling the variable T as the tracer time. Also, Morill index of the screw-type(turn numbers = 5 ) appeared to be lower than the other.

Water Quality Management of Kyung-an River Basin (경안천 유역의 수환경 관리방안)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.469-472
    • /
    • 2002
  • This study was conducted to show how to manage the water quality of Kyung-an river. The water quality and hydrologic data were obtained at the main river and branch streams in Marc $h{\sim}April$ 1998. First of all, we surveyed the contribution of branches for the pollution of water quality at Kyung-an river. It was in order of Kongiam(25.5%)>Yong-in Pollutant Treatment Complex (15.26%)^gt;Shin-won(13.99%)>Buen(11.86%)>Yangji(8.68%)>Yooun(7.43%)>Kwang-ju Pollution Treatment Complex(5.50%)>Osan(5.04%). The hydrological model using mass balance and BOD reduction formula suggested that if the quality of water Yoo-un and Shinn-won stream (branch streams of Kyung-an River) which is lowest in the basin is controlled adequately and outlet water from Yong-in pollutant treatment complex is adequately treated, the quality of Kyung-an river will be improved by 90% compared to current level.

  • PDF

Determination of operating factor and characteristics of membrane fouling on hybrid coagulation pretreatment-UF system in drinking water treatment (정수처리 응집·한외여과 시스템의 연속운전을 통한 운전조건 결정 및 막오염 특성에 관한 연구)

  • Moon, Seong-Yong;Yun, Jong-Sub;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.267-274
    • /
    • 2008
  • This study is about efficiency of pretreatment process and operating factor to membrane process at continuous coagulation/ultrafiltration process in water treatment. The capacity of pilot plant was $0.06{\beta}(C)/d$. The raw water used was from Nakdong stream which was characteristized by high organic matter and high turbidity. The result of the test was that coagulation is good process as to high removal rate to organic matter and turbidity but It caused problem to membrane pore blocking. This paper is to determine the membrane fouling potential under different membrane flux, backwash pressure and linear velocity. Backwash pressure and flux is important parameter on operation of membrane system. Those are directly affected on membrane system. When backwash pressure increased from 150 kPa to 200 kPa, the result showed that fouling (pressure increase rate) changed from 3.69 kPa/h to 0.93 kPa/h and the recovery rate changed from 90.7 % to 82.0 %. Linear velocity had slightly effect on fouling. Linear velocity increased from 0.2 m/s to 0.5 m/s, the corresponding pressure rate changed from 0.93 kPa/d to 0.77 kPa/d.

A study on Determination Method of the Compliance Concentration of Effluent Limitation from Public Sewage Treatment Works in the Jinwee-stream Watershed Sewer System (유역하수도 공공하수처리시설의 방류수 수질 준수농도 설정방안 연구: 진위천 수계를 중심으로)

  • Jeong, Dong-Hwan;Cho, Yangseok;Kim, Youngseok;Ahn, Kyunghee;Chung, Hyen-Mi;Kwon, Ohsang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.493-502
    • /
    • 2015
  • In accordance with the Watershed Sewer System Maintenance Plan enforced on February 2, 2013, the different compliance concentration of effluent limit be applied to effluent discharged from public sewage treatment works(PSTWs) in each watershed on the basis of water quality thereof. With the introduction of watershed sewer system, it is necessary to set the compliance concentration of effluent limit for PSTWs situated in the watershed, by region and PSTW size, to achieve water quality criteria for regional watersheds or target water quality under TMDL program. Watershed Environmental Agencies establish the Watershed Sewer System Maintenance Plan and set the compliance concentrations of effluent limit for PSTWs under the plan. The agencies plan to apply tougher effluent BOD concentration limits in Class I to IV areas. Effluent BOD concentration limits will be toughened from 5~10 mg/L to 3 mg/L in class II~III areas, from 10mg/L to 5mg/L in class IV areas. Uniform application of effluent BOD concentration limits to PSTWs in the watershed sewer system need to be complemented considering type of sewage treatment technology employed and watershed characteristics. Therefore, this study presents method to determine the compliance concentration of effluent limit from PSTWs in the watershed.

Development of Integrated Management System of Stormwater Retention and Treatment in Waterside Land for Urban Stream Environment (도시 하천 환경 관리를 위한 제외지 초기 강우 처리 및 저류 시설 종합 관리 시스템 개발)

  • Yin, Zhenhao;Koo, Youngmin;Lee, Eunhyoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • Increase of delivery effect of pollutant loads and surface runoff due to urbanization of catchment area results in serious environmental problems in receiving urban streams. This study aims to develop integrated stormwater management system to assist efficient urban stream flow and water quality control using information from the Storm Water Management Model (SWMM), real time water level and quality monitoring system and remote or automatic treatment facility control system. Based on field observations in the study site, most of the pollutant loads are flushed within 4 hours of the rainfall event. SWMM simulation results indicates that the treatment system can store up to 6 mm of cumulative rainfall in the study catchment area, and this means any type of normal rainfall situation can be treated using the system. Relationship between rainfall amount and fill time were developed for various rainfall duration for operation of stormwater treatment system in this study. This study can further provide inputs of river water quality model and thus can effectively assist integrated water resources management in urban catchment and streams.

Effect and Control of the Sediment in the Combined Sewer on CSOs (합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안)

  • Lim, Bongsu;Kim, Doyoung;Lee, Kuangchun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

Analysis of Micropollutants Present in Raw Water Supplied for the Several Drinking Water Treatment Plants in Seoul (서울시 정수장 유입 원수내 미량유해물질의 조사)

  • Oh, Byung-Soo;Kim, Kyoung-Suk;Ju, Seul;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • This study investigated the micropollutants present in raw water supplied for the several drinking water treatment plants in Seoul. The target sample waters were collected from the several sites, such as Jayang (JY), Kuui (KI), Paldang (PD) and Kangbuk (KB) at the Han-River stream. The analytical method used in this study enable us to detect about 300 kinds of chemicals commonly found in surface water at ppt level by GC-ion trap MS. In this study, the consideration on the analytic results focused on the four hazardous organics, such as benzenes, phenols, phthalates and pesticides. The numbers of each detected micropollutant were 1~8 kinds for benzenes, 1~7 kinds for phenols, 5~7 kinds for phthalates and 1~9 kinds for pesticides. For the pesticides, the higher concentration was detected in the water samples collected from PD and KB adjacent to the farming area, and at June and July, which is the busy farming season. The total concentrations of each micropollutants detected at all the sites were significantly lower than those of drinking water regulation in Korea as well as other advanced countries. However, the frequently detected micropollutants requires the steady and precise monitoring for the effective management of drinking water source.