• 제목/요약/키워드: stream water treatment

검색결과 322건 처리시간 0.021초

수자원 보전을 위한 유역통합관리 방안에 관한 연구(II) - 오십천 수계의 수질모델링 및 수질 예측 - (Study in the integrated watershade management for conservation of water resources (II) - Water quality modeling and simulation of Oship stream -)

  • 허인량;정의호;권재혁
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.61-69
    • /
    • 2002
  • Oship stream is located nearby south eastern coasts. This study was performed to find out waters quality modeling and then to predict water quality of Oship stream. Based on survey data, BOD, T-N, T-P calibration and verification result were in good agreement with measured value within mean coefficient variance(MSE) value, which were 13.9%, 9.0%, 26.5% and 19.5%, 12.0%, 16.5%, respectively. Sectional water quality predictions of the main stream of Oship stream are executed on the basis of the following cases 1) with sewage treatment of Dogye-eup 2) reduction of mine wastewater treatment of 80% in th basin. As a result, BOD, T-P improvement rates at down stream of Oship stream, case 1) were appeared 12.2%, 22.2%, case 2) maximum sulfate ion and conductivity reduction removal rate of Oship stream were 58%, 68%. The main pollution sources of Oship-stream were almost domestic wastewater and mine wastewater discharged from Dogye-eup which located in uppers stream. The large effects will appear after the construction of Dogye sewage water treatment plant which remove the organic matter and nutrients in these sewage water. The waste water from mine can not easily to treat for characteristics of effluence and economic problems. However, to achieve the goal of water quality in Oship-stream water system, treatments of those are necessary.

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

장래 탄천수질과 한강본류에 미치는 영향 예측 (Prediction of water quality in Tan stream of the Han river)

  • 신정식;정종흡;오경두;나규환
    • 한국환경보건학회지
    • /
    • 제27권3호
    • /
    • pp.49-56
    • /
    • 2001
  • The water quality simulation was carried out to predict water quality in Tan stream of the Han river using water quality model, QUAL2E. In the end, the future variations in water quality of Tan stream were simulated and the prediction of the impacts of Tan stream on water quality in the Han river was carried out by applying the Tan stream simulation results into the model. The results are as follows. The predicted results of future water quality of Tan stream suggested that the concentrations of BOD, T-N and T-P at Chungdam bridge would increase to 0.68~0.77 mg/$\ell$, 1.33~1.62 mg/$\ell$ and 0.05~0.06 mg/$\ell$, respectively in 2006 and 2011 and that with the implementation of advanced treatment in Sungnam and Tanchun sewage treatment plants, the concentration of T-N would be reduced more as the amount of treated sewage increase, while the concentration of T-P would stay 0.49 mg/$\ell$. The results obtained from simulation of the impacts of future Tan stream water quality improvement on the main stream of the Han river showed that with implementation of advanced treatment in both Sungnam and Tanchun sewage treatment plants, the concentration of T-N, T-P and chlorophyll-a at Hangang bridge and Heangju bridge would be reduced by 11.6%, 7.7% and 20.9%, respectively in 2..6 and by 13.6%, 9.4% and 22.2%, respectively in 2011, which indicates that the effect on the reduction of T-N and T-P would be relatively significant while the effect on the decrease of algae would be slight.

  • PDF

도시하천(갑천) 유역에서 수질오염의 공간적 특성 (Spatial Characterization of Water Pollution in the Urban Stream Watershed (Gap Stream), Korea)

  • 이흥수;허진;정선아;황순진;신재기
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.943-951
    • /
    • 2006
  • Spatial distribution of water pollution in the Gap Stream was investigated from October to November, 2005. Sampling was conducted three times including effluents discharged from a wastewater treatment plant (WWTP) and a dam reservoir during the low-flow period. As a typical urban stream, total nitrogen and inorganic nitrogen concentrations increased toward downstream. Ammonia concentration was the highest in the treated water of the wastewater treatment plant and the lowest nitrate concentration was found in the effluent of the dam reservoir. A part of soluble reactive phosphorous (SRP) in total phosphorous was 22~54% in the upstream reach of WWTP in the Gap Stream whereas 68~73% in the downstream reach. Mean chlorophyll-a concentration ranged from 1.6 to $11.0{\mu}g/L$ and it tends to increase toward downstream except for WWTP effluent. As expected, untreated wastewater and WWTP effluent were suggested as the major sources of water pollution in the Gap Stream. In this study, the water pollution of the Gap Stream is a significant undergoing typical eutrophication, caused by excessive phosphorus and nitrogen nutrients from WWTP located in the watershed. As a result, the critical factor for the water pollution was evaluated to dissolved inorganic nitrogen and phosphorus nutrients. Particularly, SRP is a most important for the eutrophication. It suggest that may occur in the most urban streams of Korean peninsula. Therefore, because the necessity of water pollution management in the urban stream, inorganic N and P nutrients should be included as an essential component of water quality criteria in the advanced water quality project of Korean Government by enforcing of water quality assessment and total maximum daily loads (TMDLs).

Impact of Pig Slurry from WangGoong Farm Cluster on Water Quality of the Iksan Stream

  • Choi, Hong-Lim;Suresh, A.;Babu, T.;Mansyur, Mansyur
    • Journal of Animal Science and Technology
    • /
    • 제53권6호
    • /
    • pp.549-561
    • /
    • 2011
  • Livestock wastewater is being discharged without treatment from Hasen's pig farm cluster in WangGoong (WG) area into the Iksan Stream, eventually flowing into the ManGyung (MG) at the upstream junction. Although it is well known that before discharge, wastewater must satisfy the pig slurry discharge standards; because of ongoing remodeling, proper treatment is not being performed. According to public records, wastewater from the WG pig farm cluster is responsible for 3.6% of MG River pollution and 2.0% of the SaeManGuem (SMG) Reservoir pollution. As a result, upstream water treatment quality has become primary concern for development of the SMG project. All physicochemical constituents and pathogenic microbes, such as chemical oxygen demand ($COD_{Cr}$), biochemical oxygen demand ($BOD_5$), total suspended solids (TSS), total nitrogen (TN), total phosphorous (TP), fecal coliforms, Escherichia coli and Salmonella at the effluent of WG Plant (S-1) exceed the effluent standards. This is mainly due to insufficient wastewater treatment: the WG Plant is under renovation to increase water purification efficiency. By comparing the water quality at the S-7 junction, where the the Iksan Stream (pig farms) and the Wanggoong Stream (no pig farms) merge, it is clear that farming facilities and improper treatment can critically affect surrounding water quality. While it is clear throughout this study that the level of all physicochemical parameters and pathogenic microbes along the Stream decreased due to sedimentation, biodegradation and/or dilution. An alarming problem was discovered: the existence of pathogenic microbe count(E coli, Salmonella) in the lagoon wastewater and the stream water. Not only were high concentrations of these pathogens themselves found, but the potential existence of more serious pathogens could rise to more dangerous conditions.

GIS를 이용한 미호천의 장래수질예측 (Water Quality Prediction of the Miho Stream Using GIS)

  • 노준우;이상진;이상욱
    • 대한공간정보학회지
    • /
    • 제16권1호
    • /
    • pp.13-21
    • /
    • 2008
  • 본 논문에서는 금강수계의 미호천을 대상으로 GIS를 이용, 2010년을 대상으로 장래수질을 예측하였다. 오염총량관리 기본계획에서 제시된 자료를 기반으로 미호천으로 유입되는 지류별 수계에 대하여 재계산하여 각 수계별 오염부하량을 산정하였으며 이들 정보를 활용하여 지류별 농도를 계산한 다음 미호천의 수질모의를 실시하였다. 수질모의는 대표적인 하천수질 모형인 Qual2E 모형을 사용해서 BOD, TN, TP 등의 대표적인 수질인자에 대한 모의를 실시 하였다. 수계별 오염부하량을 산정한 결과 도시지역을 포함한 무심천 및 보청천의 부하량이 높게 나타남을 알 수 있었고 미호천 전체 수질은 청주 하수처리장의 영향을 직접적으로 받는 것으로 나타났다. 대상유역에서의 효율적 수질관리와 오염총량제에서 제시한 목표수질을 달성하기 위해서는 하수처리장의 고도처리화가 먼저 달성되어야 함을 알 수 있었고, 그 외에도 무심천으로 공급되는 농업용수의 유량을 증가시켜 이를 수질희석의 용도로 사용하는 방안에 대해서 모의를 실시함으로써 수질기준을 만족할 수 있는 적정유량을 산정하여 제시하였다.

  • PDF

주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향 (Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal)

  • 박홍근;유대환
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.

낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석 (Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin)

  • 조현경;김상민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.493-493
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of the sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. The flow and water quality such as BOD, COD, SS, T-N, and T-P data for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS and T-P were correlated positively with river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluent and downstream stream, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between river flow rate and water quality factors (COD, SS, TP) was high for river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

  • PDF

Effects of Wastewater Treatment Plants (WWTPs) on Downstream Water Quality and Their Comparisons with Upstream Water Quality in Major Korean Watersheds

  • Jang, Seong-Hui;Kim, Hyun-Mac;An, Kwang-Guk
    • 생태와환경
    • /
    • 제42권4호
    • /
    • pp.465-475
    • /
    • 2009
  • The purpose of the study was to evaluate spatial and temporal effects of wastewater treatment plants (WWTPs) on the water quality of downstreams (Tan Stream, TS; Daemyeong Stream, DS; Gwangju Stream, GS, and Kap Stream, KS) located in four major watersheds along with impact analysis of nutrient enrichments on the WWTPs during 2004~2008. In the four streams, seasonal means of BOD, COD, TN, and TP were significantly (p<0.01) greater in the downstreams ($D_s$) than the upstreams ($U_s$). The removal effect of nutrients (nitrogen, and phosphorus) from the WWTPs was much less than the BOD, indicating a greater nutrient impact on the downstreams. Seasonal dilution of organic matter, based on BOD, during the summer monsoon of July~September was most pronounced in the downstreams of all four watersheds. However, mean TN in the downstreams during the monsoon varied little in all four streams. Regression analysis of TN in the downstreams against TN from the WWTPs showed that in the TS, and DS regression slopes in the upstreams were similar to the slopes of downstream but there was a significant difference in the GS (p<0.001) and KS (p<0.01). Tan-Stream WWTP showed low removal efficiency of BOD and COD concentrations, compared to the nutrients, whereas, two WWTPs of Gwangju and Kap Stream had low removal effects in TN and TP. Regression analysis of TN and BOD in the downstreams showed that they was closely related (p<0.01) with stream water volume only in the GS. Our data analysis suggests that greater treatment efficiencies of phosphorus and nitrogen from the WWTPs may improve the downstream water quality.

하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 - (An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea -)

  • 변찬우
    • 한국환경복원기술학회지
    • /
    • 제17권5호
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.