• Title/Summary/Keyword: stream transmission

Search Result 374, Processing Time 0.019 seconds

A Study on the Development of SSB Modem (디지털 SSB 모뎀 개발에 관한 연구)

  • Kim, Jeong-Nyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1852-1857
    • /
    • 2007
  • The SSB modem performs the modulation process which converts the digital voltage level to the audible frequency band signal and the demodulation process which converts reversely the audible frequency signal to the digital voltage level. The modulator and the demodulator are implemented with a single DSP chip. Because of the SSB specific character, the distortion occurs when the frequency is changed. This distortion has no effect on voice communication but it has an significant effect on data communication. In other words, it is impossible to send data stream with adjacent 2 periods. Therefore, in case of using 2-tone FSK, it is needed to send at least 3 periods to transmit 1 bit. Therefore we implemented the modem using modified phase-delay shift keying to transmit 1 tone signal for high speed transmission. In the 1200[bps] mode, it generates 0, $187{\mu}s$, delay time at 1.3kHz symbol frequency, and in the 2400[bps] mode, 0, $70{\mu}s\;130{\mu}s\;200{\mu}s$, delay time at 1.5kHz symbol frequency. Finally, in the maximum 3600[bps] mode, it generates 0, $100{\mu}s\;160{\mu}s\;250{\mu}s$ 2.0kHz symbol frequency. The measured results of the implemented SSB modem shows a good transfer functional characteristic by spectrum analyzer, almost same bandwidth in pass band and 20dB higher SNR comparing the emu FACTOR and American CLOVER and in the experimental transmitting test, we verified the transmitted data is received correctly in platform.

Improved AR-FGS Coding Scheme for Scalable Video Coding (확장형 비디오 부호화(SVC)의 AR-FGS 기법에 대한 부호화 성능 개선 기법)

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo;Kim, Jae-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1173-1183
    • /
    • 2006
  • In this paper, we propose an efficient method for improving visual quality of AR-FGS (Adaptive Reference FGS) which is adopted as a key scheme for SVC (Scalable Video Coding) or H.264 scalable extension. The standard FGS (Fine Granularity Scalability) adopts AR-FGS that introduces temporal prediction into FGS layer by using a high quality reference signal which is constructed by the weighted average between the base layer reconstructed imageand enhancement reference to improve the coding efficiency in the FGS layer. However, when the enhancement stream is truncated at certain bitstream position in transmission, the rest of the data of the FGS layer will not be available at the FGS decoder. Thus the most noticeable problem of using the enhancement layer in prediction is the degraded visual quality caused by drifting because of the mismatch between the reference frame used by the FGS encoder and that by the decoder. To solve this problem, we exploit the principle of cyclical block coding that is used to encode quantized transform coefficients in a cyclical manner in the FGS layer. Encoding block coefficients in a cyclical manner places 'higher-value' bits earlier in the bitstream. The quantized transform coefficients included in the ealry coding cycle of cyclical block coding have higher probability to be correctly received and decoded than the others included in the later cycle of the cyclical block coding. Therefore, we can minimize visual quality degradation caused by bitstream truncation by adjusting weighting factor to control the contribution of the bitstream produced in each coding cycle of cyclical block coding when constructing the enhancement layer reference frame. It is shown by simulations that the improved AR-FGS scheme outperforms the standard AR-FGS by about 1 dB in maximum in the reconstructed visual quality.

Regression Modeling of Water-balance in Watershed (유역(流域) 물 수지(收支)의 회귀모형화(回歸模型化))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.324-333
    • /
    • 1983
  • Modeling of longterm runoff is theoritically based on waterbalance analysis. Simplified equation of water balance with rainfall, evapotranspiration and soil moisture storage could be formulated into regression model with variables of rainfall, pan evaporation and previous-month streamflow. The hydrologic response of water shed could be represented lumpedly, qualitatively and deductively by regression coefficients of water-balance regression model. Characteristics of regression modeling of water-balance were summarized as follows; 1. Regression coefficient $b_1$ represents the rate of direct runoff component of precipitation. The bigger the drainage area, the less $b_1$ value. This means that there are more losses of interception, surface detension and transmission in the downstream watershed. 2. Regression coefficient $b_2$ represents the rate of baseflow due to changes of soil moisture storage. The bigger the drainage area and the milder the watershed slope, the bigger b, value. This means that there are more storage capacity of watershed in mild downstream watershed. 3. Regression coefficient $b_3$ represents the rate of watershed evaporation. This depends on the s oil type, soil coverage and soil moisture status. The bigger the drainage area, the bigger $b_3$ value. This means that there are more watershed evaporation loss since more storage of surface and subsurface water would be in down stream watershed. 4. It was possible to explain the seasonal variation of streamflow reasonably through regress ion coefficients. 5. Percentages of beta coefficients what is a relative measure of the importance of rainfall, evaporation and soil moisture storage to month streamflow are approximately 89%, 9% and 11% respectively.

  • PDF

A Study on Characteristics of Airborne Asbestos Concentrations Using PCM and TEM in Life Environment Surroundings of Seoul (서울지역 생활환경주변의 공기 중 석면분포 특성에 관한 연구)

  • Lee, Jinhyo;Lee, Suhyun;Kim, Jihui;Oh, Seokryul;Shin, Jinho;Eom, Seokwon;Chae, Youngzoo;Lee, Jinsook;Koo, Jayong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.613-623
    • /
    • 2013
  • This study is purposed to evaluate the airborne asbestos concentrations in life environment surroundings in Seoul. In study, we investigated airborne asbestos concentrations in thirteen subway stations, four monitoring networks and each vicinity roadside, six stream surroundings, four tunnels quarterly and we also investigated relationship between the airborne asbestos concentrations and ambient temperature in monitoring networks and time-based airborne asbestos concentration variability for two typical monitoring networks, two subway stations transferred and used by lots of people through Phase Contrast Microscopy (PCM) and Transmission Electron Microscopy (TEM). The airborne asbestos concentrations by PCM for 4 objects of study were less than the detection limit (7 fiber/$mm^2$) in 111 (50%) out of 223 samples. The highest concentration was 0.0130 f/cc. But additional TEM analysis result for samples exceeding the guideline value for indoor air quality (0.01 f/cc) proposed by the Ministry of Environment (Korea), no asbestos was detected. Similarly TEM analysis result for 124 samples, no asbestos was detected. The average airborne asbestos concentrations by PCM in subway stations, monitoring networks, streams and tunnels were $0.0041{\pm}0.0027$ f/cc, $0.0015{\pm}0.0011$ f/cc, $0.0024{\pm}0.0012$ f/cc and $0.0016{\pm}0.0020$ f/cc. All objects of study were satisfied with the guideline value for indoor air quality. The relationship between the airborne asbestos concentrations and ambient temperature in monitoring networks was generally positive correlation (r = 0.660). The higher ambient temperature was and the more transient population was, the airborne asbestos concentrations by time for two subway stations were increased. While the airborne asbestos concentrations for two monitoring networks showed no variation pattern according to time.