• Title/Summary/Keyword: stream flow rate

Search Result 400, Processing Time 0.026 seconds

Microfluidic Preparation of Monodisperse Multiple Emulsion using Hydrodynamic Control (미세채널에서 수력학적 조절을 통한 단분산성 다중 액적 생성)

  • Kang, Sung-Min;Choi, Chang-Hyung;Hwang, Sora;Jung, Jae-Min;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.733-737
    • /
    • 2012
  • This study reports the microfluidic preparation of monodisperse multiple emulsions using hydrodynamic control. To generate multiple emulsions, we fabricate a microfluidic capillary device based on co-flowing stream without any surface modification of microchannels. Based on the system, we can successfully generate multiple emulsions (W/O/W) using water containing 0.5 wt% Tween 20, n-hexadecane with 5 wt% Span 80, and 10 wt% poly (vinyl alcohol) (PVA) aqueous solution, respectively. Furthermore, we control the number of inner droplets by modulation of flow rate of inner fluid at fixed flow rate of middle and outer fluid. The multiple emulsions having precisely controlled inner droplets' size and number can be applicable for multiple chemical reactions as an isolated microreactor.

Enhancement of signal-to-noise ratio for uroflowmetric test regardless of urination situation (요속검사시 배뇨상황에 무관한 신호대잡음비 개선 기법)

  • Kim, Kyung-Ah;Choi, Seong-Su;Lee, Sang-Bong;Kim, Kyoung-Oak;Park, Kyung-Soon;Shin, Eun-Young;Kim, Wun-Jae;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.423-431
    • /
    • 2009
  • Standard uroflowmetry measures the urine weight using single load cell to evaluate the urinary flow rate. Impact noise should be introduced due to gravity when the urine stream falls down into the container upon the load cell. The present study placed three load cells on the three vertices of a regular triangle and the three signals were ensemble averaged to enhance the signal-to-noise ratio(SNR) regardless of how the urination was made. Simulated urination experiment was performed with three different urine collection methods. In all three methods, SNR of the averaged signal was much higher than each load cell signals. With no urine collection device, the present signal averaging technique resulted in SNR values higher by 10~15 dB than when dual funnels or upper funnel were used to guide the urine stream. Therefore, it was demonstrated that the three point measurement followed by with ensemble averaging could enable accurate uroflowmetric test without any specially made urine collection devices.

Determination of Representative Long-term Water Quality Parameters of the Streams in Estuarine Lake (하구호 유입하천의 유역특성에 따른 장기 대표 수질절정)

  • Kim, Young-Chul;Lee, Dong-Ryul;Hwang, Gil-Son
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.262-272
    • /
    • 2005
  • This study was undertaken to obtain design concentrations for the natural system treating stream water flowing into estuarine lake(Sapgyo). This lake has three major, so called, national-class streams: one is Gokgyo flowing through two medium-size municipal areas and the others are Muhan and Sapgyo placed in mostly rural area nested with some small towns. The results of three year's investigation showed big changes in water quality during the period between dry and wet seasons. Nitrogen concentration usually decreases as the flow rate increases. The change of phosphorus concentration in Gokgyo was the same pattern as nitrogen, but in other two streams it was inversely related with flow rates. This is probably due to the chemical property of the particles washed out from the different stream basins during wet season. It was found that about 40 to 60% of the total nitrogen are in soluble form and on average, 35% of the total phosphorus consists of dissolved-P. Representative concentration of these streams has to be separately determined based on dry and wet season. TDS and SS could be indicating parameters useful to depict and characterize a change of water quality with respect to flow rate because their measurement is easy and also includes a small analytical error. TDS values measured during dry season are related with high nitrogen concentration while during wet season, SS values effectively reflect a high concentration of phosphorus. For design purpose, cumulative concentration distribution graph presented in this paper can be directly or indirectly applied to other streams through a brief comparative and verificative study.

A Study on the Reduction of Total Phosphate of the Concerned Pollution Area in the Main Stream of Mangyeong River (만경강 본류 중 오염우심지역의 TP 저감방안 연구)

  • Jounghwa, Choi;Jaeog, Kwon;Miseon, Lee;Wook, Jang;Geunhwa, Choi;Eunhye, Ko;Seohyeon, Sim;Changwoo, Cho
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.316-326
    • /
    • 2022
  • This study aimed to investigate the causes of the increasing Total Phosphate(TP) in the mainstream of Mangyeong river over the past 10 years, and suggested a reduction plan of about 3 points. First, the high TP concentration was continuously released in the discharge outlet of the Haepo bridge stormwater pipeline. The average TP concentration was 5.066 mg/L and values as high as 29.470 mg/L were measured. The highest pollution contribution rate to the Mangyeong river was more than 70 %. The cause of the pollution was expected to take place somewhere in Wanju Industrial Complex. Second, the average TP concentration of wastewater-treated effluent in the H factory was 0.405 mg/L. If a TP reduction facility is additionally installed in the H factory, it will help reduce TP uptake by Lake Saemangeum. Third, the TP concentration of untreated non-point source point flowing into the Samrae stream was very high with an average of 2.828 mg/L. Also, the pollution contribution rate of Samraecheon 2 to Mangyeong river was 21.8 % on average and up to 58 %. The pollution contribution rate was also high during the agricultural season and the winter, during which the flow rate is decreased. Investigation of these three points may be continuously needed, and analysis results and policy proposals presented to Jeollabukdo and Wanjugun to manage pollution sources.

Numerical Study on the Thermal Entrance Effect in Miniature Thermal Conductivity Detectors (소형 Thermal Conductivity Detector의 입구열전달 거동에 대한 수치해석)

  • Kim, U-Seung;Kim, Yeong-Min;Chen, Kuan;Cheon, Won-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.439-447
    • /
    • 2002
  • The microchannel flow in miniature TCDs (thermal conductivity detectors) is investigated numerically. The solutions based on the boundary layer approximation are not very accurate in the region of the duct inlet for low Reynolds numbers. In this study, two-dimensional Navier-Stokes equations are considered to analyze the gas flow in a miniature TCD. Effects of channel size, inlet and boundary conditions on the heat transfer rate are examined. When the gas stream is not preheated, the distances for a miniature TCD to reach the conduction-dominant region for duct flow are found to be approximately two and three times the thermal entry length for duct flow with constant properties, respectively, leer constant wall temperature and constant wall heat flux boundary conditions. If the gas temperature at the channel inlet is close to the mean gas temperature in the conduction-dominant region, the entrance region is much shorter compared to other cases considered in this study.

Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System (우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과)

  • Lee, Kuang Chun;Choi, Bong Choel;Lim, Bong Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

Analysis of interaction between river and groundwaterin Kurobe river fan by a grid-based hydrological model

  • Takeuchi, Masanobu;Murata, Fumito;Katayama, Takeshi;Nakamura, Shigeru;Nakashima, Noriyuki;Yamaguchi, Haruka;Baba, Aki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.26-26
    • /
    • 2012
  • The Kurobe river, which runs through eastern Toyama Prefecture is one of the most famous rivers for wild water because of its steep slope in the range from 1/5 to 1/120. This river forms an alluvial fan in the range up to 13 kilometers from the sea. In this region, significant seepage flow occurs and thus the stream sometimes been intermitted. Moreover, the amount of seepage flow seems to vary with the groundwater level of the region. To keep the river environment healthy for flora and fauna, especially to conserve good condition for spawning of fishes, an appropriate environmental flow should be maintained in the river. To achieve this target, controlling of the upstream reservoir has to be studied in depth. One of the major problems to decide the amount of water to be released from the reservoir to maintain the environmental flow is to estimate the amount of water leaked into the groundwater from the river. This phenomenon is affected by the river flow rate as well as the groundwater level in the alluvial fan and the conditions vary in space and time. Thus, a grid-based hydrological cycle analysis model NK-GHM has been applied to clarify the hydrological cycle componentsin this area including seepage/discharge from/to the river. The model was tested by comparing with river flow rate, groundwater levels and other observations and found that the model described those observations well. Consequently, the seepage from the Kurobe river was found significant but it was also found that the groundwater in this region has been preserved by the recharge from the irrigation water supply into paddy fields in the alluvial fan.

  • PDF

Estimation of Water Purification Ability with Applying Porous Concrete to Weir and Riverbed Materials (다공성 콘크리트의 보 및 하상재료 적용에 따른 하천 수질정화 능력 평가)

  • Choi, I-Song;Kim, Jin-Hong;Choi, Gye-Woon;Oh, Jong-Min
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1013-1023
    • /
    • 2003
  • This study was performed to improve water quality of stream by applying hydraulic structures (weir and river bed material) made of porous concrete. The physical and chemical characteristics of porous concrete were measured to estimate application possibility of it in hydraulic structures and it was considered as a proper material for the hydraulic structures. In the results of comparison for the component of matters attached on the hydraulic structures made of porous and ordinary concrete, DW (dry weight) amount attached on porous concrete was 1.6 times higher than that on ordinary concrete under the condition of the same flow rate but influence by flow rate (difference of 10 times) was not shown. Therefore, we could understand that the material of media was more important in DW amount than flow rate. The rate of AFDM (ash free dry mass) to DW also was more at porous concrete than at ordinary concrete. Especially, the high rates of nitrogen and phosphorous in matters attached on porous concrete verify that they were removed by assimilation, adsorption and metabolism of periphyton. The removal percentage of SS, BOD, COD, T-N and T-P by hydraulic structures applying porous concrete compared with ordinary concrete was increased by 34.6%, 36.9%, 33.9%, 18.3% and 21.6%, respectively. Therefore, applying porous concrete to hydraulic structure is expected to contribute to improvement of stream water quality.

Comparison of Nitrogen Removal During Plant Growing Season with Non-Growing One in Free Water Surface Wetlands Purifying Stream Water (하천수를 정화하는 자유수면습지의 식물 성장기와 비성장기의 질소제거 비교)

  • Yang, Hong-Mo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.82-92
    • /
    • 2010
  • Removal rates of NO3-N and TN in a free water surface wetland system during emergent plant growing season and non-growing were investigated. The system was established on floodplain in the down reach of the Gwangju Stream in 2008. Its dimensions were 46 meters in length and 5 meters in width. Typha angustifloria L. growing in pots about two years were planted on the half area of the system and Zizania latifolia Turcz on the other half. Water of the stream was funneled into it by gravity flow and its effluent was discharged back into it. Volumes and water quality of inflow and outflow were analyzed from October 2008 to September 2009. Inflow into the system averaged approximately 715 $m^3$/day and hydraulic residence time was about 1.5 hr. Average influent and effluent $NO_3$-N concentration was 3.37 and 2.74 mg/L, respectively and $NO_3$-N retention amounted to 18.7%. Influent and effluent TN concentration averaged 4.67 and 3.69 mg/L, respectively and TN abatement reached to 20.9%. $NO_3$-N removal rate (%) during plant growing season ($22.67{\pm}3.70$, mean ${\pm}$ standard error) was significantly high (p<0.001) when compared with that during plant non-growing one ($15.02{\pm}3.23$). TN abatement rate (%) during plant growing season ($27.42{\pm}5.98$) was also significantly high (p<0.001) when compared with that during plant non-growing one ($13.66{\pm}3.08$).

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.