KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.2
/
pp.154-173
/
2010
Database outsourcing is unavoidable in the near future. In the scenario of data stream outsourcing, the data owner continuously publishes the latest data and associated authentication information through a service provider. Clients may register queries to the service provider and verify the result's correctness, utilizing the additional authentication information. Research on On-line Stream Analytics (OLSA) is motivated by extending the data cube technology for higher multi-level abstraction on the low-level-abstracted data streams. Existing work on OLSA fails to consider the issue of database outsourcing, while previous work on stream authentication does not support OLSA. To close this gap and solve the problem of OLSA query authentication while outsourcing data streams, we propose MDAHRB and MDAHB, two multi-dimensional authentication approaches. They are based on the general data model for OLSA, the stream cube. First, we improve the data structure of the H-tree, which is used to store the stream cube. Then, we design and implement two authentication schemes based on the improved H-trees, the HRB- and HB-trees, in accordance with the main stream query authentication framework for database outsourcing. Along with a cost models analysis, consistent with state-of-the-art cost metrics, an experimental evaluation is performed on a real data set. It exhibits that both MDAHRB and MDAHB are feasible for authenticating OLSA queries, while MDAHRB is more scalable.
Data cube plays an important role in multi-dimensional, multi-level data analysis. Meeting on-line analysis requirements of data stream, several cube structures have been proposed for OLAP on data stream, such as stream cube, flowcube, S-cube. Since it is costly to construct data cube and execute ad-hoc OLAP queries, more research works should be done considering efficient data structure, query method and algorithms. Stream cube uses H-cubing to compute selected cuboids and store the computed cells in an H-tree, which form the cuboids along popular-path. However, the H-tree layoutis disorderly and H-cubing method relies too much on popular path.In this paper, first, we propose $H^*$-tree, an improved data structure, which makes the retrieval operation in tree structure more efficient. Second, we propose an improved cubing method, $H^*$-cubing, with respect to computing the cuboids that cannot be retrieved along popular-path when an ad-hoc OLAP query is executed. $H^*$-tree construction and $H^*$-cubing algorithms are given. Performance study turns out that during the construction step, $H^*$-tree outperforms H-tree with a more desirable trade-off between time and memory usage, and $H^*$-cubing is better adapted to ad-hoc OLAP querieswith respect to the factors such as time and memory space.
Data cube, which is multi-dimensional data model, have been successfully applied in many cases of multi-dimensional data analysis, and is still being researched to be applied in data stream analysis. Data stream is being generated in real-time, incessant, immense, and volatile manner. The distribution characteristics of data arc changing rapidly due to those characteristics, so the primary rule of handling data stream is to check once and dispose it. For those characteristics, users are more interested in high support attribute values observed rather than the entire attribute values over data streams. This paper propose dynamic data cube for applying data cube to data stream environment. Dynamic data cube specify user's interested area by the support ratio of attribute value, and dynamically manage the attribute values by grouping each other. By doing this it reduce the memory usage and process time. And it can efficiently shows or emphasize user's interested area by increasing the granularity for attributes that have higher support. We perform experiments to verify how efficiently dynamic data cube works in limited memory usage.
Stream data is a continuous flow of information that mostly arrives as the form of an infinite rapid stream. Recently researchers show a great deal of interests in analyzing such data to obtain value added information. Here, we propose an efficient cube computation algorithm for multidimensional analysis of stream data. The fact that stream data arrives in an unsorted fashion and aggregation results can only be obtained after the last data item has been read. cube computation requires a tremendous amount of memory. In order to resolve such difficulties, we compute user selected aggregation fables only, and use a combination of an way and AVL trees as a temporary storage for aggregation tables. The proposed cube computation algorithm works even when main memory is not large enough to store all the aggregation tables during the computation. We showed that the proposed algorithm is practically fast enough by theoretical analysis and performance evaluation.
In this paper, we focus on a novel technique called the cube-linear attack, which is formed by combining cube attacks with linear attacks. It is designed to recover the secret information in a probabilistic polynomial and can reduce the data complexity required for a successful attack in specific circumstances. In addition to the different combination strategies of the two attacks, two cube-linear schemes are discussed. Applying our method of a cube-linear attack to a reduced-round Trivium, as an example, we get better linear cryptanalysis results. More importantly, we believe that the improved linear cryptanalysis technique introduced in this paper can be extended to other ciphers.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.332-335
/
2008
In this paper, based on H-tree, which is proposed as the basic data cube structure for multi-dimensional data stream analysis, we have done some analysis. We find there are a lot of redundant nodes in H-tree, and the tree-build method can be improved for saving not only memory, but also time used for inserting tuples. Also, to facilitate more fast and large amount of data stream analysis, which is very important for stream research, H*-tree is designed and developed. Our performance study compare the proposed H*-tree and H-tree, identify that H*-tree can save more memory and time during inserting data stream tuples.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.55-57
/
2005
유비쿼터스 환경이 도래함에 따라 데이터 흐름이 신속하고 연속적으로 변화하고 있다. 이러한 스트림형태의 데이터는 데이터의 치명적 변화, 자주 발생하지 않는 패턴 등의 관점에서 데이터 분석을 필요로 하고 있다. 본 논문에서는 다단계의 추상화 데이터 분석이 용이한 다차원 분석에 기반하여 고정적인 공간활용만이 가능했던 기존 방식을 살펴본 후 이를 유동적으로 보완하여 공간 비용을 최소화 하면서 평균응답시간을 줄여주는 방법에 대해 논의한다. 또한 제안 방법의 시공간 비용을 수식으로 증명하고 기존 방법과의 비교 실험을 통하여 성능을 평가해 본다.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.287-288
/
2009
Multi-query optimization (MQO) is a critical research issue in the real-time data stream management system (DSMS). We propose to address this problem in the ubiquitous GIS (u-GIS) environment, focusing on grouping 'similar' spatio-temporal queries incrementally into N clusters so that they can be processed virtually as N queries. By minimizing N, the overlaps in the data requirements of the raw queries can be avoided, which implies the reducing of the total disk I/O cost. In this paper, we define the spatio-temporal query clustering problem and give a data cubing approach (Q-cube), which is expected to be implemented in the cloud computing paradigm.
For the large scale computation of turbulent flows around an arbitrarily shaped body, a parallel LES (large eddy simulation) code has been recently developed in which domain decomposition method is adopted. METIS and MPI (message Passing interface) libraries are used for domain partitioning and data communication between processors, respectively. For unsteady computation of the incompressible Wavier-Stokes equation, 4-step splitting finite element algorithm [1] is adopted and Smagorinsky or dynamic LES model can be chosen fur the modeling of small eddies in turbulent flows. For the validation and performance-estimation of the parallel code, a three-dimensional laminar flow generated by natural convection inside a cube has been solved. Then, we have solved the turbulent flow around MIRA (Motor Industry Research Association) model at $Re = 2.6\times10^6$, which is based on the model height and inlet free stream velocity, using 32 processors on IBM SMP cluster and compared with the existing experiment.
In this paper, we mainly study the random sampling and reconstruction of signals living in the subspace Vp(𝚽, 𝚲) of Lp(ℝd), which is generated by a family of molecules 𝚽 located on a relatively separated subset 𝚲 ⊂ ℝd. The space Vp(𝚽, 𝚲) is used to model signals with finite rate of innovation, such as stream of pulses in GPS applications, cellular radio and ultra wide-band communication. The sampling set is independently and randomly drawn from a general probability distribution over ℝd. Under some proper conditions for the generators 𝚽 = {𝜙λ : λ ∈ 𝚲} and the probability density function 𝜌, we first approximate Vp(𝚽, 𝚲) by a finite dimensional subspace VpN (𝚽, 𝚲) on any bounded domains. Then, we prove that the random sampling stability holds with high probability for all signals in Vp(𝚽, 𝚲) whose energy concentrate on a cube when the sampling size is large enough. Finally, a reconstruction algorithm based on random samples is given for signals in VpN (𝚽, 𝚲).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.