• Title/Summary/Keyword: stream computing

Search Result 191, Processing Time 0.026 seconds

Numerical Models for Atmospheric Diffusion Phenomena by Pseudospectral Method(2) : Spectral Model for a Hilly Terrain of Real Scale (의사스펙트로법에 의한 대기확산현상의 수치모델(2): 실규모의 복잡지형에서의 스펙트로모델)

  • 김선태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.242-246
    • /
    • 1993
  • Theoretically, spectral method has the highest accuracy among present numerical methods, but it is generally difficult to apply to complex terrains because of complex boundary conditions. Recently, spectral-element method, basically divide the domain into a set of rectangular subdomain and solve the equation at each subdomain, has been introduced. However, boundary conditions become more complex and requires more computing time, thus spectral-element method is not powerful for all complex terrain problems. In this paper, potential flow theory was intorduced to solve the air flows and diffusion phenomenon in the presence of terrain obstacles. Using the velocity potential-stream line orthogonal coordinate space, the diffusion problems of hilly terrain by pseudospectral method were solved and compared those with no terrain real scale solutions.

  • PDF

Recovery Method of missing Motion Vector using Cluster (클러스터를 이용한 손실된 움직임 벡터 복원 방법)

  • 손남례;이귀상
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2371-2374
    • /
    • 2003
  • In transmitting compressed video bit-stream over Internet, packet loss causes error propagation in both spatial and temporal domain, which in turn leads to severe degradation in image qualify In this paper, a new approach for the recovery of lost or erroneous Motion Vector(MV)s by clustering the movements of neighboring blocks by their homogeneity is proposed. MVs of neighboring blocks are clustered according to ALA(Average Linkage Algorithm) clustering and a representative value for each cluster is determined to obtain the candidate MV set. By computing the distortion of the candidates, a MV with the minimum distortion is selected. Experimental results show that the proposed algorithm exhibits better performance in many cases than existing methods.

  • PDF

Hardware Implementation of High Speed CODEC for PACS (PACS를 위한 고속 CODEC의 하드웨어 구현)

  • 유선국;박성욱
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.475-480
    • /
    • 1994
  • For the effective management of medical images, it becomes popular to use computing machines in medical practice, namely PACS. However, the amount of image data is so large that there is a lack of storage space. We usually use data compression techniques to save storage, but the process speed of machines is not fast enough to meet surgical requirement. So a special hardware system processing medical images faster is more important than ever. To meet the demand for high speed image processing, especially image compression and decompression, we designed and implemented the medical image CODEC (COder/DECoder) based on MISD (Multiple Instruction Single Data stream) architecture to adopt parallelism in it. Considering not being a standard scheme of medical image compression/decompression, the CODEC is designed programable and general. In this paper, we use JPEG (Joint Photographic Experts Group) algorithm to process images and evalutate the CODEC.

  • PDF

INFLUENCE OF CONVECTION ON LINE ASYMMETRIES

  • Park, Yong-Sun;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.1
    • /
    • pp.15-31
    • /
    • 1986
  • We have analyzed Gray's observed mean line bisectors of FS, G0, G2, and G5 normal dwarf stars and interpreted them by computing theoretical line bisectors based on a two stream model. A set of perturbed models has been derived, and their detailed structures on temperature fluctuations and velocity fields are presented as a function of depth, which account for the observed bisectors. From the present study, it is found that the degree of stellar convective overshootings and temperature fluctuations in the upper atmospheres increases towards earlier spectral types. The convection cell size inferred from these models is found to increase also with the advancing earlier type. We demonstrated the usefulness of line bisector analysis as a diagnostic probe for stellar convection.

  • PDF

A STUDY ON THE SEDIMENT AND THE RIVER BED VARIATION (하천의 유사량과 하상변동에 관한 연구)

  • 남선우
    • Water for future
    • /
    • v.11 no.1
    • /
    • pp.47-58
    • /
    • 1978
  • This study is concerned with the analysis of the formulas which give both the quantity of the total, suspended and bed loads as functions of stream and sediment characteristics. The numerical analysis of sediment discharge formulas is described and the computer program for the following 4 formulas are developed; (1) Einstein's Formula (2) Toffaleti's Formula (3) Brown's Formula (4) Kikkawa's Formula In the analysis of these formulas, the hydraulic data of the river in the downstream of the Han River are used, and these formulas have been tested by application and comparison with observed data and the results computed by the computer. In these methods and procedures, the most satisfactory and convenient formula is selected. The design and planning of the river channel regulation works are determined by computing the river bed variation by using the sediment discharge computed from the selected formula.

  • PDF

Trends of Low-Precision Processing for AI Processor (NPU 반도체를 위한 저정밀도 데이터 타입 개발 동향)

  • Kim, H.J.;Han, J.H.;Kwon, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.1
    • /
    • pp.53-62
    • /
    • 2022
  • With increasing size of transformer-based neural networks, a light-weight algorithm and efficient AI accelerator has been developed to train these huge networks in practical design time. In this article, we present a survey of state-of-the-art research on the low-precision computational algorithms especially for floating-point formats and their hardware accelerator. We describe the trends by focusing on the work of two leading research groups-IBM and Seoul National University-which have deep knowledge in both AI algorithm and hardware architecture. For the low-precision algorithm, we summarize two efficient floating-point formats (hybrid FP8 and radix-4 FP4) with accuracy-preserving algorithms for training on the main research stream. Moreover, we describe the AI processor architecture supporting the low-bit mixed precision computing unit including the integer engine.

Spatio-temporal Query Clustering: A Data Cubing Approach (시공간 질의 클러스터링: 데이터 큐빙 기법)

  • Chen, Xiangrui;Baek, Sung-Ha;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.287-288
    • /
    • 2009
  • Multi-query optimization (MQO) is a critical research issue in the real-time data stream management system (DSMS). We propose to address this problem in the ubiquitous GIS (u-GIS) environment, focusing on grouping 'similar' spatio-temporal queries incrementally into N clusters so that they can be processed virtually as N queries. By minimizing N, the overlaps in the data requirements of the raw queries can be avoided, which implies the reducing of the total disk I/O cost. In this paper, we define the spatio-temporal query clustering problem and give a data cubing approach (Q-cube), which is expected to be implemented in the cloud computing paradigm.

Self-Organizing Middleware Platform Based on Overlay Network for Real-Time Transmission of Mobile Patients Vital Signal Stream (이동 환자 생체신호의 실시간 전달을 위한 오버레이 네트워크 기반 자율군집형 미들웨어 플랫폼)

  • Kang, Ho-Young;Jeong, Seol-Young;Ahn, Cheol-Soo;Park, Yu-Jin;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.630-642
    • /
    • 2013
  • To transmit vital signal stream of mobile patients remotely, it requires mobility of patient and watcher, sensing function of patient's abnormal symptom and self-organizing service binding of related computing resources. In the existing relative researches, the vital signal stream is transmitted as a centralized approach which exposure the single point of failure itself and incur data traffic to central server although it is localized service. Self-organizing middleware platform based on heterogenous overlay network is a middleware platform which can transmit real-time data from sensor device(including vital signal measure devices) to Smartphone, TV, PC and external system through overlay network applied self-organizing mechanism. It can transmit and save vital signal stream from sensor device autonomically without arbitration of management server and several receiving devices can simultaneously receive and display through interaction of nodes in real-time.

Design and Implementation of a Spatio-Temporal Middleware for Ubiquitous Environments (유비쿼터스 환경을 위한 시공간 미들웨어의 설계 및 구현)

  • Kim, Jeong-Joon;Jeong, Yeon-Jong;Kim, Dong-Oh;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2009
  • As R&D(Research and Development) is going on actively to develop technologies for the ubiquitous computing environment, which Is the human-oriented future computing environment, GIS dealing with spatio-temporal data is emerging as a promising technology. This also increases the necessity of the middleware for providing services to give interoperability in various heterogeneous environments. The core technologies of the middleware are real-time processing technology of data streams coming unceasingly from positioning systems and data stream processing technology developed for non-spatio-temporal data. However, it has problems in processing queries on spatio-temporal data efficiently. Accordingly, this paper designed and implemented the spatio-temporal middleware that provides interoperability between a mobile spatio-temporal DBMS(DataBase Management System) and a server spatio-temporal MMDBMS(Main Memory DataBase Management System). The spatio-temporal middleware maintains interoperability among heterogeneous devices and guarantees data integrity in query processing through real-time processing of unceasing spatio-temporal data streams and two way synchronization of spatio-temporal DBMSs. In addition, it manages session for the connection of each spatio-temporal DBMS and manages resources for its stable operation. Finally, this paper proved the usability of the spatio-temporal middleware by applying it to a real-time position tracking system.

  • PDF

Visualization of Malwares for Classification Through Deep Learning (딥러닝 기술을 활용한 멀웨어 분류를 위한 이미지화 기법)

  • Kim, Hyeonggyeom;Han, Seokmin;Lee, Suchul;Lee, Jun-Rak
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.67-75
    • /
    • 2018
  • According to Symantec's Internet Security Threat Report(2018), Internet security threats such as Cryptojackings, Ransomwares, and Mobile malwares are rapidly increasing and diversifying. It means that detection of malwares requires not only the detection accuracy but also versatility. In the past, malware detection technology focused on qualitative performance due to the problems such as encryption and obfuscation. However, nowadays, considering the diversity of malware, versatility is required in detecting various malwares. Additionally the optimization is required in terms of computing power for detecting malware. In this paper, we present Stream Order(SO)-CNN and Incremental Coordinate(IC)-CNN, which are malware detection schemes using CNN(Convolutional Neural Network) that effectively detect intelligent and diversified malwares. The proposed methods visualize each malware binary file onto a fixed sized image. The visualized malware binaries are learned through GoogLeNet to form a deep learning model. Our model detects and classifies malwares. The proposed method reveals better performance than the conventional method.