• 제목/요약/키워드: strain-induced phase transformation

검색결과 32건 처리시간 0.025초

Unique local deformations of the superelastic SMA rods during stress-relaxation tests

  • Ashiqur Rahman, Muhammad;Rahman Khan, Mujibur
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.563-574
    • /
    • 2006
  • This paper studies mechanical behavior of the superelastic shape memory alloy (SMA) rods in terms of local deformations and time via tensile loading-unloading cycles for both ends fixed end constraints. Besides the unique stress induced martensitic transformation (SIMT), SMA's time dependent behavior when it is in mixed-phase condition upon loading and unloading, also need careful attention with a view of investigating the local deformation of the structural elements made of the same material. With this perspective, the so-called stress-relaxation tests have been performed to demonstrate and investigate the local strains-total strains relationships with time, particularly, during the forward SIMT. Some remarkable phenomena have been observed pertaining to SIMT, which are absent in traditional materials and those unique phenomena have been explained qualitatively. For example, at the stopped loading conditions the two ends (fixed end and moving end of the tensile testing machine) were in fixed positions. So that there was no axial overall deformation of the specimen but some notable increase in the axial local deformation was shown by the extensometer placed at the middle of the SMA specimen. It should be noted that this peculiar behavior termed as 'inertia driven SIMT' occurs only when the loading was stopped at mixed phase condition. Besides this relaxation test for the SMA specimens, the same is performed for the mild steel (MS) specimens under similar test conditions. The MS specimens, however, show no unusual increase of local strains during the stress relaxation tests.

Strain-induced islands and nanostructures shape transition's chronology on InAs (100) surface

  • Gambaryan, Karen M.;Aroutiounian, Vladimir M.;Simonyan, Arpine K.;Ai, Yuanfei;Ashalley, Eric;Wang, Zhiming M.
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.211-217
    • /
    • 2014
  • The self-assembled strain-induced sub-micrometric islands and nanostructures are grown from In-As-Sb-P quaternary liquid phase on InAs (100) substrates in Stranski-Krastanow growth mode. Two samples are under consideration. The first sample consists of unencapsulated islands and lens-shape quantum dots (QDs) grown from expressly inhomogeneous liquid phase. The second sample is an n-InAs/p-InAsSbP heterostructure with QDs embedded in the p-n junction interface. The morphology, size and shape of the structures are investigated by high-resolution scanning electron (SEM) and transmission electron (TEM) microscopy. It is shown that islands, as they decrease in size, undergo shape transitions. Particularly, as the volume decreases, the following succession of shape transitions are detected: sub-micrometric truncated pyramid, {111} facetted pyramid, {111} and partially {105} facetted pyramid, completely unfacetted "pre-pyramid", hemisphere, lens-shaped QD, which then evolves again to nano-pyramid. A critical size of $5{\pm}2nm$ for the shape transformation of InAsSbP-based lens-shaped QD to nano-pyramid is experimentally measured and theoretically evaluated.

Low Temperature Tensile Properties of High Temperature Gas-nitrided Duplex Stainless Steel

  • On, Han-Yong;Kong, Jung-Hyun;Kim, Mi-Jeong;Park, Sang-Joon;Kang, Chang-Yong;Sung, Jang-Hyun
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.263-268
    • /
    • 2010
  • This investigation was focused on the low temperature tensile properties, phase change, changes in nitrogen content and corrosion resistance in the 22Cr-5Ni-3Mo duplex stainless steel after high temperature gas nitriding and solution annealing (HTGN-SA). From the HTGN-SA treatment, the duplex (ferrite + austenite) phase changed into austenite single phase. The nitrogen content of austenite single-phase steel showed a value of ~0.54%. For the HTGN-SA treated austenitic steel, tensile strength increased with lowering test temperature, on the other hand elongation showed the maximum value of 28.2% at $-100^{\circ}C$. The strain-induced martensitic transformation gave rise to lead the maximum elongation. After HTGN-SA treatment, corrosion resistance of the austenite single-phase steel increased remarkably compared with HTGN- treated steel.

Effect of Solution Treatment and Short Time Aging on Mechanical Properties of Cast Ti-6Al-4V Alloy

  • Oh, Seong-Tak;Woo, Kee-Do;Kwak, Seung-Mi;Kim, Jae-Hwang
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.287-291
    • /
    • 2016
  • The effect of heat treatment on the microstructure and mechanical properties of cast Ti-6%Al-4%V alloy was investigated. Heat treatment of cast Ti-6Al-4V alloy was conducted by solution treatment at $950^{\circ}C$ for 30 min; this was followed by water quenching and then aging at $550^{\circ}C$ for 1 to 1440 min. The highest hardness of the heat-treated specimens was obtained by solution treatment and subsequent aging for 5 min due to precipitates of fine ${\alpha}$ that formed from retained ${\beta}$ phase. The tensile strength of this alloy increased without dramatic decrease of the ductility due to microstructural refinement resulting from the decomposition of ${\alpha}^{\prime}$ martensite into fine ${\alpha}$ and ${\beta}$ phases, and also due to the fine ${\alpha}$ phase formed from the retained ${\beta}$ phase by aging treatment for 5 min. In addition, this strengthening might be caused by the transformation induced plasticity (TRIP) effect, which is a strain-induced martensite transformation from the retained ${\beta}$ phase during deformation, and which occurs even after aging treatment at $550^{\circ}C$ for 5 min.

304 스테인리스 강의 가공유기 마르텐사이트와 기계적 거동에 미치는 온도의 영향 (Effects of annealing temperature on strain-induced martensite and mechanical properties of 304 stainless steel)

  • 이상훈;최점용;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2008
  • Transformation of austenite to martensite during cold rolling has been widely used to strengthen metastable austenitic stainless steel grades. Aging treatment of cold worked metastable austenitic stainless steels, including ${\alpha}'$-martensite phase, results in the further increase of strength, when aging is performed in $200^{\circ}C$ to $450^{\circ}C$ temperature range. The purpose of the present study was to evaluate the effect of time and temperature on the stress-strain behavior of cold worked austenitic stainless steels. The amount of ${\alpha}'$-martensite during cold working and aging was examined by ferrite scope and X-ray diffraction (XRD). During aging at $450^{\circ}C$ for 1hr, tensile strength dramatically increased by 150MPa. Deformed metastable austenitic steels containing the "body-centered" ${\alpha}'$-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature.

  • PDF

극저온용 스테인레스 강의 저온거동 특성 (Mechanical Characteristics of Stainless Steel under Low Temperature Environment)

  • 홍진한;금동민;한대석;박인범;전민성;고경완;이제명
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.530-537
    • /
    • 2008
  • Austenitic stainless steels(SUS 304, SUS 316), which are used for safety control valve of LNG carrier, are occasionally exposed in the cryogenic environment. In this regards, it is required to evaluate the mechanical characteristics under the low temperature environment. In this study, a series of uniaxial tensile test was carried out varying temperature for austenitic stainless steel. The phenomena of the strain-induced plasticity have been observed on the all temperature ranges. The critical value for threshold of 2nd hardening due to the phase transformation induced plasticity as well as the increase of hardening have been reported. The summarized experimental results would be used for the validation of numerical techniques applicable for the nonlinear hardening behavior of austenitic stainless steel under the cryogenic temperature environment.

페라이트-오스테나이트 2상역 온도에서 미량합금 원소가 첨가된 탄소강의 재결정 거동 (Recrystallization Behavior in the Two-Phase (α+γ) Region of Micro-Alloyed Steels)

  • 이승용;김지연;황병철
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.583-589
    • /
    • 2016
  • In this study, recrystallization behaviors in the two-phase (${\alpha}+{\gamma}$) region of micro-alloyed steels such as Base, Nb, TiNbV and CAlN were investigated in terms of flow stress, microstructure and associated grain boundary characteristics. The flow stress of all specimens reached peak stress and gradually decreased, which means that recrystallization or recovery of proeutectoid deformed ferrite and recovery or transformation to ferrite of deformed austenite occurred by thermal activation. The precipitation of carbide or nitride via the addition of micro-alloying elements, because it reduced prior austenite grain size upon austenitization, promoted transformation of austenite to ferrite and increased flow stress. The strain-induced precipitation under deformation in the two-phase region, on the other hand, increased the flow stress when the micro-alloying elements were dissolved during austenitization. The recrystallization of the Nb specimen was more effectively retarded than that of the TiNbV specimen during deformation in the two-phase region.

Tunable Metal-Insulator Phase Transition in $VO_2$ Nanowires

  • Seong, Won-Kyung;Lee, Ji-Yeong;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.385-385
    • /
    • 2012
  • Understanding the thermodynamics and structural transformation during the Metal-Insulator Transition (MIT) is critical to better understand the underlying physical origin of phase transition in the vanadiumdioxide ($VO_2$). Here, through the temperature-dependent in-situ high resolutiontransmission electron microscopy (HR-TEM), and systematic electrical transport study, we have shown that the tunable MIT transition of $VO_2$ nanowires is strongly affected by interplay between strain and domain nucleation by ion beam irradiation. Surprsingly, we have also observed that the $VO_2$ rutile (R) metallic phase could form directly in a strain-induced metastable monoclinic (M2) phase. These insights open the door toward more systematic approaches to synthesis for $VO_2$ nanostructures in desired phase and to use for applications including ultrafast optical switching, smart window, metamaterial, resistance RAM and synapse devices.

  • PDF

선박 및 해양구조물용 극저온 재료의 온도 및 변형률 속도 의존 통합 구성방정식 개발 (Development of Temperature and Strain-Rate Dependent Unified Constitutive Equation for Ships and Offshore Structures)

  • 박웅섭;김정현;전민성;이제명
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.200-206
    • /
    • 2011
  • The mechanical properties of the most widely used cryogenic materials, i.e. austenitic stainless steel (ASS), aluminum alloy and invar steel, strongly depend on temperatures and strain rates. These phenomena show very complicated non-linear behaviors and cannot be expressed by general constitutive equation. In this study, an unified constitutive equation was proposed to represent the effect of temperature and strain rate on the materials. The proposed constitutive equation has been based on Tomita/Iwamoto and Bodner/Partom model for the expression of 2nd hardening due to martensite phase transformation of ASS. To simulate ductile fracture, modified Bodner/Chan damage model was additionally applied to the model and the model validity was verified by comparison of experimental and simulation results.

Strain relaxed Co nanocrystals formation from thin films on sapphire substrate induced by nano-second laser irradiation

  • 서옥균;강덕호;손준곤;최정원;하성수;김선민;강현철;노도영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.145.2-145.2
    • /
    • 2016
  • We report the phase transformation of Co thin films on a sapphire substrate induced by laser irradiation. As grown Co films were initially strained and tetragonally distorted. With low power laser irradiation, the surface was ruptured and irregular holes were formed. As the laser power was increased, the films changed into round shape Co nanocrystals with well-defined 6-fold structure. By measuring the XRD of Co nanostructure as a function of laser energy densities, we found that the change of morphological shapes from films to nanocrystals was accompanied with decrease of the tetragonal distortion as well as strain relaxation. By measuring the size distribution of nanocrystals as a function of film thickness, the average diameter is proportional to 1.7 power of the film thickness which was consistent with the prediction of thin film hydrodynamic (TFT) dwetting theory. Finally, we fabricated the formation of size controlling nanocrystals on the sapphire substrate without strain.

  • PDF