• Title/Summary/Keyword: strain-based approach

Search Result 428, Processing Time 0.021 seconds

Proteomic Analysis of the Oxidative Stress Response Induced by Low-Dose Hydrogen Peroxide in Bacillus anthracis

  • Kim, Sang Hoon;Kim, Se Kye;Jung, Kyoung Hwa;Kim, Yun Ki;Hwang, Hyun Chul;Ryu, Sam Gon;Chai, Young Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.750-758
    • /
    • 2013
  • Anthrax is a bacterial disease caused by the aerobic spore-forming bacterium Bacillus anthracis, which is an important pathogen owing to its ability to be used as a terror agent. B. anthracis spores can escape phagocytosis and initiate the germination process even in antimicrobial conditions, such as oxidative stress. To analyze the oxidative stress response in B. anthracis and thereby learn how to prevent antimicrobial resistance, we performed protein expression profiling of B. anthracis strain HY1 treated with 0.3 mM hydrogen peroxide using a comparative proteomics-based approach. The results showed a total of 60 differentially expressed proteins; among them, 17 showed differences in expression over time. We observed time-dependent changes in the production of metabolic and repair/protection signaling proteins. These results will be useful for uncovering the metabolic pathways and protection mechanisms of the oxidative response in B. anthracis.

Fatigue Life Estimation of Welded Joints considering Statistical Characteristics of Multiple Surface Cracks (복수 표면균열의 확률적 특성을 고려한 용접부 피로수명 평가)

  • Han, Jeong Woo;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1472-1479
    • /
    • 2005
  • Multiple surface crack distributed randomly along a weld toe influences strongly on the fatigue crack propagation life of welded joint. It is investigated by using statistical approaches based on series of systematic experiments. From the statistical results, initial crack numbers and its locations follow the normal distribution, and the probability of initial crack depths and lengths can be described well by tile Weibull distribution. These characteristics are used to calculate the fatigue crack propagation life, in which the mechanisms of mutual interaction and coalescence of the multiple cracks are considered as well as the Mk-factors obtained from a parametric study on the crack depths and lengths. The automatic calculation is achieved by the NESUSS, where the parameters such as the number, location and size of the cracks are all treated as random variables. The random variables are dealt through the Monte-Carlo simulation with sampling random numbers of 2,000. The simulation results show that the multiple cracks lead to much shorter crack propagation life compared with those in single crack situation. The sum of the simulation and tile fatigue crack initiation life derived by the notch strain approach agrees well with the experiments.

Non-linear analysis of composite steel-concrete beams with incomplete interaction

  • Cas, Bojan;Bratina, Sebastjan;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.489-507
    • /
    • 2004
  • The flexibility of the connection between steel and concrete largely influences the global behaviour of the composite beam. Therefore the way the connection is modelled is the key issue in its structural analysis. Here we present a new strain-based finite element formulation in which we consider non-linear material and contact models. The computational efficiency and accuracy of the formulation is proved with the comparison of our numerical results with the experimental results of Abdel Aziz (1986) obtained in a full-scale laboratory test. The shear connectors are assumed to follow a non-linear load-slip relationship proposed by Ollgaard et al. (1971). We introduce the notion of the generalized slip, which offers a better physical interpretation of the behaviour of the contact and gives an additional material slip parameter. An excellent agreement of experimental and numerical results is obtained, using only a few finite elements. This demonstrates that the present numerical approach is appropriate for the evaluation of behaviour of planar composite beams and perfect for practical calculations.

FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model

  • Ferrotto, Marco F.;Cavaleri, Liborio;Trapani, Fabio Di
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2018
  • This paper deepens the finite element modeling (FEM) method to reproduce the compressive behavior of partially steel-jacketed (PSJ) RC columns by means of the Concrete Damaged Plasticity (CDP) Model available in ABAQUS software. Although the efficiency of the CDP model is widely proven for reinforced concrete columns at low confining pressure, when the confinement level becomes high the standard plasticity parameters may not be suitable to obtain reliable results. This paper deals with these limitations and presents an analytically based strategy to fix the parameters of the Concrete Damaged Plasticity (CDP) model. Focusing on a realistic prediction of load-bearing capacity of PSJ RC columns subjected to monotonic compressive loads, a new strain hardening/softening function is developed for confined concrete coupled with the evaluation of the dilation angle including effects of confinement. Moreover, a simplified efficient modeling approach is proposed to take into account also the response of the steel angle in compression. The prediction accuracy from the current model is compared with that of existing experimental data obtained from a wide range of mechanical confinement ratio.

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.

Flexural behavior of retrofitted RC columns by FRP-MF, Experimental approach

  • Mahdavi, Navideh;Tasnimi, Abbas Ali
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.347-356
    • /
    • 2019
  • Most of the recent studies have improved the efficiency of FRP jackets for increasing the compressive strength, shear strength, and ductility of reinforced concrete columns; however, the influence of FRP jackets on the flexural capacity is slight. Although new methods such as NSM (near surface mounted) are utilized to solve this problem, yet practical difficulties, behavior dependency on adhesives, and brittle failure necessitate finding better methods. This paper presents the results of an experimental study on the application of fiber-reinforced polymer fastened mechanically to the concrete columns to improve the flexural capacity of RC columns. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental program included five reinforced concrete columns retrofitted by different methods using FRP subjected to constant axial compression and lateral cyclic loading. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and good composite action of FRP and RC column was achieved. Moreover, the experimental results were compared with the results obtained from the analytical study based on strain compatibility, and good proximity was reached.

Molecular Pathophysiology of Ossification of the Posterior Longitudinal Ligament (OPLL)

  • Nam, Dae Cheol;Lee, Hyun Jae;Lee, Choong Jae;Hwang, Sun-Chul
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.342-348
    • /
    • 2019
  • Ossification of the posterior longitudinal ligament (OPLL) can be defined as an ectopic ossification in the tissues of spinal ligament showing a hyperostotic condition. OPLL is developed mostly in the cervical spine and clinical presentations of OPLL are majorly myelopathy and/or radiculopathy, with serious neurological pathology resulting in paralysis of extremities and disturbances of motility lowering the quality of life. OPLL is known to be an idiopathic and multifactorial disease, which genetic factors and non-genetic factors including diet, obesity, physical strain on the posterior longitudinal ligament, age, and diabetes mellitus, are involved into the pathogenesis. Up to now, surgical management by decompressing the spinal cord is regarded as standard treatment for OPLL, although there might be the risk of development of reprogression of ossification. The molecular pathogenesis and efficient therapeutic strategy, especially pharmacotherapy and/or preventive intervention, of OPLL has not been clearly elucidated and suggested. Therefore, in this review, we tried to give an overview to the present research results on OPLL, in order to shed light on the potential pharmacotherapy based on molecular pathophysiologic aspect of OPLL, especially on the genetic/genomic factors involved into the etiology of OPLL.

A damage model predicting moderate temperature and size effects on concrete in compression

  • Hassine, Wiem Ben;Loukil, Marwa;Limam, Oualid
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.321-327
    • /
    • 2019
  • Experimental isotherm compressive tests show that concrete behaviour is dependent on temperature. The aim of such tests is to reproduce how concrete will behave under environmental changes within a moderate range of temperature. In this paper, a novel constitutive elastic damage behaviour law is proposed based on a free energy with an apparent damage depending on temperature. The proposed constitutive behaviour leads to classical theory of thermo-elasticity at small strains. Fixed elastic mechanical characteristics and fixed evolution law of damage independent of temperature and the material volume element size are considered. This approach is applied to compressive tests. The model predicts compressive strength and secant modulus of elasticity decrease as temperature increases. A power scaling law is assumed for specific entropy as function of the specimen size which leads to a volume size effect on the stress-strain compressive behaviour. The proposed model reproduces theoretical and experimental results from literature for tempertaures ranging between $20^{\circ}C$ and $70^{\circ}C$. The effect of the difference in the coefficient of thermal expansion between the mortar and coarse aggregates is also considered which gives a better agreement with FIB recommendations. It is shown that this effect is of a second order in the considered moderate range of temperature.

High-Throughput Screening Technique for Microbiome using MALDI-TOF Mass Spectrometry: A Review

  • Mojumdar, Abhik;Yoo, Hee-Jin;Kim, Duck-Hyun;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.106-114
    • /
    • 2022
  • A rapid and reliable approach to the identification of microorganisms is a critical requirement for large-scale culturomics analysis. MALDI-TOF MS is a suitable technique that can be a better alternative to conventional biochemical and gene sequencing methods as it is economical both in terms of cost and labor. In this review, the applications of MALDI-TOF MS for the comprehensive identification of microorganisms and bacterial strain typing for culturomics-based approaches for various environmental studies including bioremediation, plant sciences, agriculture and food microbiology have been widely explored. However, the restriction of this technique is attributed to insufficient coverage of the mass spectral database. To improve the applications of this technique for the identification of novel isolates, the spectral database should be updated with the peptide mass fingerprint (PMF) of type strains with not only microbes with clinical relevance but also from various environmental sources. Further, the development of enhanced sample processing methods and new algorithms for automation and de-replication of isolates will increase its application in microbial ecology studies.

Detection of Listeria Species by Conventional Culture-Dependent and Alternative Rapid Detection Methods in Retail Ready-to-Eat Foods in Turkey

  • Emine Dincer
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.349-357
    • /
    • 2024
  • Foodborne pathogens, like Listeria monocytogenes, continue to inflict substantial financial losses on the food industry. Various methods for detecting Listeria in food have been developed and numerous studies have been conducted to compare the different methods. But, in recent years, new Listeria species have been identified, and currently the genus comprises 26 species. Therefore, it would be a more accurate approach to re-evaluate existing detection methods by considering new species. The present investigation involved the analysis of 42 ready-to-eat (RTE) foods, encompassing a variety of food categories, such as mezes, salads, dairy products, and meat products, with the aim of ascertaining the presence of Listeria. Among the traditional culture-dependent reference methods, the ISO 11290 method was preferred. The process of strain identification was conducted with the API Identification System. Furthermore, to ascertain the existence of L. monocytogenes and Listeria spp., the samples underwent additional analysis employing the VIDAS Immunoassay System, ELISA, and RT-PCR methodologies. Thus, four alternative approaches were employed in this study to compare not only the different methods used to determine Listeria while taking into account the newly identified Listeria species, but also to assess the compliance of retail RTE food items with microbiological criteria pertaining to the genus Listeria. Based on the conducted analyses, L. monocytogenes was conclusively determined to be present in one sample. The presence of Listeria spp. was detected in 30.9% of the samples, specifically in Turkish cig kofte, sliced salami, and salads.