• Title/Summary/Keyword: strain reversal effect

Search Result 9, Processing Time 0.022 seconds

3-D Frame Analysis Using Refined Plastic Hinge Analysis Accounting for Non-Proportional Loading (비비례하중을 고려하는 개선소성힌지 해석을 이용한 3차원 강뼈대 구조물의 해석)

  • 김창성;김승억;주환중
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.77-84
    • /
    • 2003
  • In this paper, the refined plastic-hinge analysis accounting for the effect of strain reversal caused by non-proportional loading is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem, conventional refined plastic-hinge analyses have underestimated the strength of structures subjected to non-proportional loading, is overcome. The modified stiffness degradation model approximating the effect of strain reversal is discussed in detail. The proposed analysis is verified by the comparison of the finite element analysis. A case study shows that the effect of strain reversal is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

  • PDF

Nonlinear Inelastic Analysis of 3-Dimensional Steel Structures Using Fiber Elements (화이버 요소를 이용한 3차원 강구조물의 비선형 비탄성 해석)

  • Kim, Seung-Eock;Oh, Jung-Ryul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.347-356
    • /
    • 2006
  • In this paper, practical nonlinear inelastic analysis method of 3-dimensional steel structures accounting for gradual yielding with fibers on a section is developed. Geometric nonlinearities of member(p-$\delta$) and frame(p-$\Delta$) are accounted for by using stability functions. Residual stresses are considered by assigning initial stresses to the fiber on the section. The elastic core in a section is investigated at every loading step to determine the axial and bending stiffness reduction. The strain reversal effect is captured by investigating the stress change of each fiber. The proposed analysis proves to be useful in applying for practical analysis and design of three-dimensional steel frames.

Flexural ductility of RC beam sections at high strain rates

  • Pandey, Akhilesh K.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.537-552
    • /
    • 2013
  • Computation of flexural ductility of reinforced concrete beam sections has been proposed by taking into account strain rate sensitive constitutive behavior of concrete and steel, confinement of core concrete and degradation of cover concrete during load reversal under earthquake loading. The estimate of flexural ductility of reinforced concrete rectangular sections has been made for a wide range of tension and compression steel ratios for confined and unconfined concrete at a strain rate varying from $3.3{\times}10^{-5}$ to 1.0/sec encountered during normal and earthquake loading. The parametric studies indicated that flexural ductility factor decreases at increasing strain rates. Percentage decrease is more for a richer mix concrete with the similar reinforcement. The confinement effect has marked influence on flexural ductility and increase in ductility is more than twice for confined concrete (0.6 percent volumetric ratio of transverse steel) compared to unconfined concrete. The provisions in various codes for achieving ductility in moment resisting frames have been discussed.

Effect of Pre-strain on the Bauschinger Phenomenon of Micro-Alloying Forging Steel (비조질강의 바우싱거 효과에 미치는 변형율 영향)

  • Kwon Y.-N.;Lee Y. S.;Kim S. W.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.313-316
    • /
    • 2005
  • In the present study, Bauschinger effect was investigated for the micro-alloying forging steel which has been developed for about 30 years ago to save energy consumption by eliminating the heat treatment processes in the forging industry. The micro-alloying steels used fur cold forging industry mainly aim to replace the usual carbon steel. With the conventional carbon steels, all the deformation history can be eliminated after the final heat treatment(quenching and tempering). In the case of micro-alloying forging steels, however, the prior deformation history should be taken into consideration to meet the mechanical property requirement since the microstructure of micro-alloying steels might exhibit the Bauschinger effect, which was not needed to consider in the case of conventional carbon steel having quenching and tempering treatment. In the present study, the reverse loading tests were carried out to determine the Bauschinger effect of micro-alloying steel which composed of ferrite and cementite phases.

  • PDF

Effect of presurfacing on drying rate and drying defect of Quercus grosseserrata BI. (전평삭처리(前平削處理)가 물참나무의 건조속도(乾燥速度)와 건조결함(乾燥缺陷)에 미치는 영향(影響))

  • Han, Gyu-Seong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.29-39
    • /
    • 1986
  • To investigate the effect of presurfacing, both 25mm rough and pre surfaced oak boards (Quercus grosseserrata BI.) were dried in the same dry kiln condition. Drying curves, drying strains and drying defects of rough and presurfaced boards were compared. The results obatained are as follows. 1. Average drying rate of rough and presurfaced boards from green to 10% M.C. was 0.276%/hr. and 0.284%/hr., respectively. 2. At the early stage of drying, in case of rough boards, maximum tensile strain of outer slices was $-24.2{\times}10^{-4}$mm/mm and maximum compressive strain of innermost slices was $13.0{\times}10^{-4}$mm/mm, and in case of pre surfaced boards, maximum tensile strain of outer slices was $-14.5{\times}10^{-4}$mm/mm and maximum compressive strain of innermost slices was $28.1{\times}10^{-4}$mm/mm. And in both cases, stress reversal occurred at about 40% M.C.. 3. Maximum surface checking appeared at about 40% M.C.. Of the 10 rough boards. 6 hoards contained surface checks, but presurfaced boards did not contained surface checks after drying. And the results of end checking were similar to those of surface checking. But, honeycomb was not found in both cases. 4. Board shrinkage. warp and casehardening of presurfaced boards were similar to those of rough boards. But, collapse of prsurfaced boards was less than that of rough boards.

  • PDF

Isolation and Properties of Antitumor Antibiotic YS-1649 from Penicillium sp. strain 1649

  • BOO-kIL PARK;YOO, SEONG-JAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.31-35
    • /
    • 1995
  • An antitumor antibiotic named YS-1649 was isolated from the culture filtrate of a newly isolated fungus identified as Penicillium sp.. The fermentation yield reached about 40 mg per liter of the broth. YS-1649, a $\gamma$-Iactone - structured antibiotic, has the molecular fomular of $C_7H_6O_4$, Its structure was determined to be patulin by spectral analysis. It is active against some bacteria and showed cytotoxic effect on the proliferation of human breast cancer cell line, MCF-7, at concentrations of more than 0.048 $mu g/ml$. This compound also showed strong cytotoxic effect on the proliferation of human cancer cell lines, A549 and ACHN.

  • PDF

Refined-plastic hinge analysis of 3D steel structures using fiber elements (화이버 요소를 이용한 3차원 강구조물의 개선소성힌지해석)

  • 김승억;오정렬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.281-287
    • /
    • 2004
  • In this paper, the refined plastic-hinge analysis accounting for gradual yielding with fibers on a section is developed. Geometric nonlinearities of member(P-δ) and frame(P-Δ) are accounted for by using stability functions. Residual stresses are considered by assigning initial stresses to the fiber on the section. The elastic core in a section is investigated at every loading step to determine the axial and bending stiffness reduction. The strain reversal effect is captured by investigating the stress change of each fiber. The proposed analysis proves to be useful in applying for practical analysis and design of three-dimensional steel frames.

  • PDF

Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA

  • Feng, Zhenyue;Liu, Defu;Liu, Ziwen;Liang, Yimin;Wang, Yanhong;Liu, Qingpeng;Liu, Zhenhua;Zang, Zhongjing;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.982-995
    • /
    • 2020
  • A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drug-sensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.